Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2006_2_1_a0, author = {S. V. Gonchenko and O. V. Sten'kin and L. P. Shilnikov}, title = {On the existence of infinitely many stable and unstable invariant tori for systems from {Newhouse} regions with heteroclinic tangencies}, journal = {Russian journal of nonlinear dynamics}, pages = {3--25}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2006_2_1_a0/} }
TY - JOUR AU - S. V. Gonchenko AU - O. V. Sten'kin AU - L. P. Shilnikov TI - On the existence of infinitely many stable and unstable invariant tori for systems from Newhouse regions with heteroclinic tangencies JO - Russian journal of nonlinear dynamics PY - 2006 SP - 3 EP - 25 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2006_2_1_a0/ LA - ru ID - ND_2006_2_1_a0 ER -
%0 Journal Article %A S. V. Gonchenko %A O. V. Sten'kin %A L. P. Shilnikov %T On the existence of infinitely many stable and unstable invariant tori for systems from Newhouse regions with heteroclinic tangencies %J Russian journal of nonlinear dynamics %D 2006 %P 3-25 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2006_2_1_a0/ %G ru %F ND_2006_2_1_a0
S. V. Gonchenko; O. V. Sten'kin; L. P. Shilnikov. On the existence of infinitely many stable and unstable invariant tori for systems from Newhouse regions with heteroclinic tangencies. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/ND_2006_2_1_a0/