The ringing of Euler's disk
Russian journal of nonlinear dynamics, Tome 1 (2005) no. 2, pp. 247-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

The motion of disks spun on tables has the well-known feature that the associated acoustic signal increases in frequency as the motion tends towards its abrupt halt. Recently, a commercial toy, known as Euler's disk, was designed to maximize the time before this abrupt ending. In this paper, we present and simulate a rigid body model for Euler's disk. Based on the nature of the contact force between the disk and the table revealed by the simulations, we conjecture a new mechanism for the abrupt halt of the disk and the increased acoustic frequency associated with the decline of the disk.
Keywords: rigid body, motion of disk, dissipation.
Mots-clés : equations of motion
@article{ND_2005_1_2_a6,
     author = {P. Kessler and O. M. O'Reilly},
     title = {The ringing of {Euler's} disk},
     journal = {Russian journal of nonlinear dynamics},
     pages = {247--260},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2005_1_2_a6/}
}
TY  - JOUR
AU  - P. Kessler
AU  - O. M. O'Reilly
TI  - The ringing of Euler's disk
JO  - Russian journal of nonlinear dynamics
PY  - 2005
SP  - 247
EP  - 260
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2005_1_2_a6/
LA  - ru
ID  - ND_2005_1_2_a6
ER  - 
%0 Journal Article
%A P. Kessler
%A O. M. O'Reilly
%T The ringing of Euler's disk
%J Russian journal of nonlinear dynamics
%D 2005
%P 247-260
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2005_1_2_a6/
%G ru
%F ND_2005_1_2_a6
P. Kessler; O. M. O'Reilly. The ringing of Euler's disk. Russian journal of nonlinear dynamics, Tome 1 (2005) no. 2, pp. 247-260. http://geodesic.mathdoc.fr/item/ND_2005_1_2_a6/