Numerical analysis of rotation of a rigid body subject to the sum of a constant and dissipative moment
Russian journal of nonlinear dynamics, Tome 1 (2005) no. 2, pp. 209-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper explores the evolution of rotation of a rigid body influenced by a constant and dissipative disturbing moments. With the assumption that the disturbing moments are small, it has been shown numerically that for almost all initial conditions the body's motion tends asymptotically to a steady rotation around a principal axis with either largest or smallest moment of inertia. On the plane of initial conditions, the points corresponding to these two types of ultimate rotation have been shown to be distributed almost randomly.
Keywords: disturbed motion, probabilistic phenomena, diagrams of asymptotic motion.
@article{ND_2005_1_2_a3,
     author = {K. G. Tronin},
     title = {Numerical analysis of rotation of a rigid body subject to the sum of a constant and dissipative moment},
     journal = {Russian journal of nonlinear dynamics},
     pages = {209--213},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2005_1_2_a3/}
}
TY  - JOUR
AU  - K. G. Tronin
TI  - Numerical analysis of rotation of a rigid body subject to the sum of a constant and dissipative moment
JO  - Russian journal of nonlinear dynamics
PY  - 2005
SP  - 209
EP  - 213
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2005_1_2_a3/
LA  - ru
ID  - ND_2005_1_2_a3
ER  - 
%0 Journal Article
%A K. G. Tronin
%T Numerical analysis of rotation of a rigid body subject to the sum of a constant and dissipative moment
%J Russian journal of nonlinear dynamics
%D 2005
%P 209-213
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2005_1_2_a3/
%G ru
%F ND_2005_1_2_a3
K. G. Tronin. Numerical analysis of rotation of a rigid body subject to the sum of a constant and dissipative moment. Russian journal of nonlinear dynamics, Tome 1 (2005) no. 2, pp. 209-213. http://geodesic.mathdoc.fr/item/ND_2005_1_2_a3/