The phase transition for the three-state SOS model with one-level competing interactions on the binary tree
Nanosistemy: fizika, himiâ, matematika, Tome 16 (2025) no. 2, pp. 134-141
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a three-state solid-on-solid (SOS) model with two competing interactions (nearest-neighbor, one-level next-nearest-neighbor) on the Cayley tree of order two. We show that at some values of the parameters the model exhibits a phase transition. We also prove that for the model under some conditions there is no two-periodic Gibbs measures.
Keywords:
cayley tree, Gibbs measure, SOS model, competing interactions.
@article{NANO_2025_16_2_a1,
author = {Obid Sh. Karshiboev and Muzaffar M. Rahmatullaev},
title = {The phase transition for the three-state {SOS} model with one-level competing interactions on the binary tree},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {134--141},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2025_16_2_a1/}
}
TY - JOUR AU - Obid Sh. Karshiboev AU - Muzaffar M. Rahmatullaev TI - The phase transition for the three-state SOS model with one-level competing interactions on the binary tree JO - Nanosistemy: fizika, himiâ, matematika PY - 2025 SP - 134 EP - 141 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2025_16_2_a1/ LA - en ID - NANO_2025_16_2_a1 ER -
%0 Journal Article %A Obid Sh. Karshiboev %A Muzaffar M. Rahmatullaev %T The phase transition for the three-state SOS model with one-level competing interactions on the binary tree %J Nanosistemy: fizika, himiâ, matematika %D 2025 %P 134-141 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/NANO_2025_16_2_a1/ %G en %F NANO_2025_16_2_a1
Obid Sh. Karshiboev; Muzaffar M. Rahmatullaev. The phase transition for the three-state SOS model with one-level competing interactions on the binary tree. Nanosistemy: fizika, himiâ, matematika, Tome 16 (2025) no. 2, pp. 134-141. http://geodesic.mathdoc.fr/item/NANO_2025_16_2_a1/