The phase transition for the three-state SOS model with one-level competing interactions on the binary tree
Nanosistemy: fizika, himiâ, matematika, Tome 16 (2025) no. 2, pp. 134-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a three-state solid-on-solid (SOS) model with two competing interactions (nearest-neighbor, one-level next-nearest-neighbor) on the Cayley tree of order two. We show that at some values of the parameters the model exhibits a phase transition. We also prove that for the model under some conditions there is no two-periodic Gibbs measures.
Keywords: cayley tree, Gibbs measure, SOS model, competing interactions.
@article{NANO_2025_16_2_a1,
     author = {Obid Sh. Karshiboev and Muzaffar M. Rahmatullaev},
     title = {The phase transition for the three-state {SOS} model with one-level competing interactions on the binary tree},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {134--141},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2025_16_2_a1/}
}
TY  - JOUR
AU  - Obid Sh. Karshiboev
AU  - Muzaffar M. Rahmatullaev
TI  - The phase transition for the three-state SOS model with one-level competing interactions on the binary tree
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2025
SP  - 134
EP  - 141
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2025_16_2_a1/
LA  - en
ID  - NANO_2025_16_2_a1
ER  - 
%0 Journal Article
%A Obid Sh. Karshiboev
%A Muzaffar M. Rahmatullaev
%T The phase transition for the three-state SOS model with one-level competing interactions on the binary tree
%J Nanosistemy: fizika, himiâ, matematika
%D 2025
%P 134-141
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2025_16_2_a1/
%G en
%F NANO_2025_16_2_a1
Obid Sh. Karshiboev; Muzaffar M. Rahmatullaev. The phase transition for the three-state SOS model with one-level competing interactions on the binary tree. Nanosistemy: fizika, himiâ, matematika, Tome 16 (2025) no. 2, pp. 134-141. http://geodesic.mathdoc.fr/item/NANO_2025_16_2_a1/