On Keller--Rubinow model for Liesegang structure formation
Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 4, pp. 365-371.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a chemical process, the precipitate of which will be represented by a structure in the form of rings. The study and modeling of this process is relevant, since it becomes possible to form micro- and nanostructures based on this approach. We consider the version of the one-dimensional model of Keller and Rubinow which describes the formation of Liesegang rings due to the Ostwald supersaturation. The dependencies of the results obtained on the initial conditions and the model parameters were studied numerically.
Keywords: Liesegang rings, Keller–Rubinow model, chemical reaction modeling.
Mots-clés : nanostructures
@article{NANO_2022_13_4_a1,
     author = {Timur N. Topaev and Anton I. Popov and Igor Yu. Popov},
     title = {On {Keller--Rubinow} model for {Liesegang} structure formation},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {365--371},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2022_13_4_a1/}
}
TY  - JOUR
AU  - Timur N. Topaev
AU  - Anton I. Popov
AU  - Igor Yu. Popov
TI  - On Keller--Rubinow model for Liesegang structure formation
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2022
SP  - 365
EP  - 371
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2022_13_4_a1/
LA  - en
ID  - NANO_2022_13_4_a1
ER  - 
%0 Journal Article
%A Timur N. Topaev
%A Anton I. Popov
%A Igor Yu. Popov
%T On Keller--Rubinow model for Liesegang structure formation
%J Nanosistemy: fizika, himiâ, matematika
%D 2022
%P 365-371
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2022_13_4_a1/
%G en
%F NANO_2022_13_4_a1
Timur N. Topaev; Anton I. Popov; Igor Yu. Popov. On Keller--Rubinow model for Liesegang structure formation. Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 4, pp. 365-371. http://geodesic.mathdoc.fr/item/NANO_2022_13_4_a1/