N wells at a circle. Splitting of lower eigenvalues
Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 212-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

A stationary Schrödinger operator on $\mathbb{R}^2$ with a potential $V$ having $N$ nondegenerate minima which divide a circle of radius $r_0$ into $N$ equal parts is considered. Some sufficient asymptotic formulae for lower energy levels are obtained in a simple example. The ideology of our research is based on an abstract theorem connecting modes and quasi-modes of some self-adjoint operator A and some more detailed investigation of low energy levels in one well (in $\mathbb{R}^d$).
Keywords: Schrödinger operator, potential, splitting, eigenvalues and eigenfunctions.
@article{NANO_2018_9_2_a7,
     author = {T. F. Pankratova},
     title = {N wells at a circle. {Splitting} of lower eigenvalues},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {212--214},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a7/}
}
TY  - JOUR
AU  - T. F. Pankratova
TI  - N wells at a circle. Splitting of lower eigenvalues
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2018
SP  - 212
EP  - 214
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a7/
LA  - en
ID  - NANO_2018_9_2_a7
ER  - 
%0 Journal Article
%A T. F. Pankratova
%T N wells at a circle. Splitting of lower eigenvalues
%J Nanosistemy: fizika, himiâ, matematika
%D 2018
%P 212-214
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a7/
%G en
%F NANO_2018_9_2_a7
T. F. Pankratova. N wells at a circle. Splitting of lower eigenvalues. Nanosistemy: fizika, himiâ, matematika, Tome 9 (2018) no. 2, pp. 212-214. http://geodesic.mathdoc.fr/item/NANO_2018_9_2_a7/