Energetics of carbon nanotubes with open edges: Modeling and experiment
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 5, pp. 635-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modeling approaches based on the density functional theory (DFT): the Kohn–Sham (KS) method and orbital-free (OF) method are used to for calculation of the binding energies per atom as functions of the diameter of single-wall carbon nanotubes (SWCNTs) with the open ends. It is shown that this energy has a minimum at a diameter of about 1.1 – 1.2 nm. The experiments made by means of Raman spectroscopy have shown that diameters of SWCNTs mainly lie in the range of 1 – 1.5 nm.
Keywords: SWCNT, energy, diameter, modeling, Kohn–Sham, orbital free, Raman spectroscopy.
@article{NANO_2017_8_5_a12,
     author = {V. G. Zavodinsk{\cyru} and O. A. Gorkusha and A. P. Kuz'menko},
     title = {Energetics of carbon nanotubes with open edges: {Modeling} and experiment},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {635--640},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_5_a12/}
}
TY  - JOUR
AU  - V. G. Zavodinskу
AU  - O. A. Gorkusha
AU  - A. P. Kuz'menko
TI  - Energetics of carbon nanotubes with open edges: Modeling and experiment
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2017
SP  - 635
EP  - 640
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2017_8_5_a12/
LA  - en
ID  - NANO_2017_8_5_a12
ER  - 
%0 Journal Article
%A V. G. Zavodinskу
%A O. A. Gorkusha
%A A. P. Kuz'menko
%T Energetics of carbon nanotubes with open edges: Modeling and experiment
%J Nanosistemy: fizika, himiâ, matematika
%D 2017
%P 635-640
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2017_8_5_a12/
%G en
%F NANO_2017_8_5_a12
V. G. Zavodinskу; O. A. Gorkusha; A. P. Kuz'menko. Energetics of carbon nanotubes with open edges: Modeling and experiment. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 5, pp. 635-640. http://geodesic.mathdoc.fr/item/NANO_2017_8_5_a12/