Coupling of definitizable operators in Krein spaces
Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 2, pp. 166-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

Indefinite Sturm–Liouville operators defined on $\mathbb{R}$ are often considered as a coupling of two semibounded symmetric operators defined on $\mathbb{R}^+$ and $\mathbb{R}^-$, respectively. In many situations, those two semibounded symmetric operators have in a special sense good properties like a Hilbert space self-adjoint extension. In this paper, we present an abstract approach to the coupling of two (definitizable) self-adjoint operators. We obtain a characterization for the definitizability and the regularity of the critical points. Finally we study a typical class of indefinite Sturm–Liouville problems on $\mathbb{R}$.
Keywords: self-adjoint extension, symmetric operator, Krein space, locally definitizable operator, coupling of operators, boundary triple, Weyl function, regular critical point.
@article{NANO_2017_8_2_a2,
     author = {V. Derkach and C. Trunk},
     title = {Coupling of definitizable operators in {Krein} spaces},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {166--179},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a2/}
}
TY  - JOUR
AU  - V. Derkach
AU  - C. Trunk
TI  - Coupling of definitizable operators in Krein spaces
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2017
SP  - 166
EP  - 179
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a2/
LA  - en
ID  - NANO_2017_8_2_a2
ER  - 
%0 Journal Article
%A V. Derkach
%A C. Trunk
%T Coupling of definitizable operators in Krein spaces
%J Nanosistemy: fizika, himiâ, matematika
%D 2017
%P 166-179
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a2/
%G en
%F NANO_2017_8_2_a2
V. Derkach; C. Trunk. Coupling of definitizable operators in Krein spaces. Nanosistemy: fizika, himiâ, matematika, Tome 8 (2017) no. 2, pp. 166-179. http://geodesic.mathdoc.fr/item/NANO_2017_8_2_a2/