On the number of eigenvalues of the family of operator matrices
Nanosistemy: fizika, himiâ, matematika, Tome 5 (2014) no. 5, pp. 619-625
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the family of operator matrices $H(K)$, $K\in\mathbb{T}^3:=(-\pi,\pi]^3$ acting in the direct sum of zero-, one- and two-particle subspaces of the bosonic Fock space. We find a finite set $\Lambda\subset\mathbb{T}^3$ to establish the existence of infinitely many eigenvalues of $H(K)$ for all $K\in\Lambda$ when the associated Friedrichs model has a zero energy resonance. It is found that for every $K\in\Lambda$ the number $N(K,z)$ of eigenvalues of $H(K)$ lying on the left of $z$, $z0$, satisfies the asymptotic relation $\lim_{z\to -0}N(k,z)|\log|z||^{-1}=\mathcal{U}_0$ with $0\mathcal{U}_0\infty$, independently on the cardinality of $\Lambda$. Moreover, we show that for any $K\in\Lambda$ the operator $H(K)$ has a finite number of negative eigenvalues if the associated Friedrichs model has a zero eigenvalue or a zero is the regular type point for positive definite Friedrichs model.
Keywords:
operator matrix, bosonic Fock space, annihilation and creation operators, Friedrichs model, essential spectrum, asymptotics.
@article{NANO_2014_5_5_a0,
author = {M. I. Muminov and T. H. Rasulov},
title = {On the number of eigenvalues of the family of operator matrices},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {619--625},
publisher = {mathdoc},
volume = {5},
number = {5},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2014_5_5_a0/}
}
TY - JOUR AU - M. I. Muminov AU - T. H. Rasulov TI - On the number of eigenvalues of the family of operator matrices JO - Nanosistemy: fizika, himiâ, matematika PY - 2014 SP - 619 EP - 625 VL - 5 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2014_5_5_a0/ LA - en ID - NANO_2014_5_5_a0 ER -
M. I. Muminov; T. H. Rasulov. On the number of eigenvalues of the family of operator matrices. Nanosistemy: fizika, himiâ, matematika, Tome 5 (2014) no. 5, pp. 619-625. http://geodesic.mathdoc.fr/item/NANO_2014_5_5_a0/