On the number of eigenvalues of the family of operator matrices
Nanosistemy: fizika, himiâ, matematika, Tome 5 (2014) no. 5, pp. 619-625.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the family of operator matrices $H(K)$, $K\in\mathbb{T}^3:=(-\pi,\pi]^3$ acting in the direct sum of zero-, one- and two-particle subspaces of the bosonic Fock space. We find a finite set $\Lambda\subset\mathbb{T}^3$ to establish the existence of infinitely many eigenvalues of $H(K)$ for all $K\in\Lambda$ when the associated Friedrichs model has a zero energy resonance. It is found that for every $K\in\Lambda$ the number $N(K,z)$ of eigenvalues of $H(K)$ lying on the left of $z$, $z0$, satisfies the asymptotic relation $\lim_{z\to -0}N(k,z)|\log|z||^{-1}=\mathcal{U}_0$ with $0\mathcal{U}_0\infty$, independently on the cardinality of $\Lambda$. Moreover, we show that for any $K\in\Lambda$ the operator $H(K)$ has a finite number of negative eigenvalues if the associated Friedrichs model has a zero eigenvalue or a zero is the regular type point for positive definite Friedrichs model.
Keywords: operator matrix, bosonic Fock space, annihilation and creation operators, Friedrichs model, essential spectrum, asymptotics.
@article{NANO_2014_5_5_a0,
     author = {M. I. Muminov and T. H. Rasulov},
     title = {On the number of eigenvalues of the family of operator matrices},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {619--625},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2014_5_5_a0/}
}
TY  - JOUR
AU  - M. I. Muminov
AU  - T. H. Rasulov
TI  - On the number of eigenvalues of the family of operator matrices
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2014
SP  - 619
EP  - 625
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2014_5_5_a0/
LA  - en
ID  - NANO_2014_5_5_a0
ER  - 
%0 Journal Article
%A M. I. Muminov
%A T. H. Rasulov
%T On the number of eigenvalues of the family of operator matrices
%J Nanosistemy: fizika, himiâ, matematika
%D 2014
%P 619-625
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2014_5_5_a0/
%G en
%F NANO_2014_5_5_a0
M. I. Muminov; T. H. Rasulov. On the number of eigenvalues of the family of operator matrices. Nanosistemy: fizika, himiâ, matematika, Tome 5 (2014) no. 5, pp. 619-625. http://geodesic.mathdoc.fr/item/NANO_2014_5_5_a0/