Weyl function for sum of operators tensor products
Nanosistemy: fizika, himiâ, matematika, Tome 4 (2013) no. 6, pp. 747-759.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary triplets approach is applied to the construction of self-adjoint extensions of the operator having the form $S=A\otimes I_T+I_A\otimes T$ where the operator $A$ is symmetric and the operator $T$ is bounded and self-adjoint. The formula for the $\gamma$-field and the Weyl function corresponding the the boundary triplet $\Pi_S$ is obtained in terms of the $\gamma$-field and the Weyl function corresponding to the boundary triplet $\Pi_A$.
Keywords: operator extension, Weyl function, boundary triplet.
@article{NANO_2013_4_6_a1,
     author = {A. A. Boitsev and H. Neidhardt and I. Yu. Popov},
     title = {Weyl function for sum of operators tensor products},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {747--759},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2013_4_6_a1/}
}
TY  - JOUR
AU  - A. A. Boitsev
AU  - H. Neidhardt
AU  - I. Yu. Popov
TI  - Weyl function for sum of operators tensor products
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2013
SP  - 747
EP  - 759
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2013_4_6_a1/
LA  - en
ID  - NANO_2013_4_6_a1
ER  - 
%0 Journal Article
%A A. A. Boitsev
%A H. Neidhardt
%A I. Yu. Popov
%T Weyl function for sum of operators tensor products
%J Nanosistemy: fizika, himiâ, matematika
%D 2013
%P 747-759
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2013_4_6_a1/
%G en
%F NANO_2013_4_6_a1
A. A. Boitsev; H. Neidhardt; I. Yu. Popov. Weyl function for sum of operators tensor products. Nanosistemy: fizika, himiâ, matematika, Tome 4 (2013) no. 6, pp. 747-759. http://geodesic.mathdoc.fr/item/NANO_2013_4_6_a1/