Weyl function for sum of operators tensor products
Nanosistemy: fizika, himiâ, matematika, Tome 4 (2013) no. 6, pp. 747-759
Voir la notice de l'article provenant de la source Math-Net.Ru
The boundary triplets approach is applied to the construction of self-adjoint extensions of the operator having the form
$S=A\otimes I_T+I_A\otimes T$ where the operator $A$ is symmetric and the operator $T$ is bounded and self-adjoint. The formula for the $\gamma$-field and the Weyl function corresponding the the boundary triplet $\Pi_S$ is obtained in terms of the $\gamma$-field and the Weyl function corresponding to the boundary triplet $\Pi_A$.
Keywords:
operator extension, Weyl function, boundary triplet.
@article{NANO_2013_4_6_a1,
author = {A. A. Boitsev and H. Neidhardt and I. Yu. Popov},
title = {Weyl function for sum of operators tensor products},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {747--759},
publisher = {mathdoc},
volume = {4},
number = {6},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2013_4_6_a1/}
}
TY - JOUR AU - A. A. Boitsev AU - H. Neidhardt AU - I. Yu. Popov TI - Weyl function for sum of operators tensor products JO - Nanosistemy: fizika, himiâ, matematika PY - 2013 SP - 747 EP - 759 VL - 4 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2013_4_6_a1/ LA - en ID - NANO_2013_4_6_a1 ER -
A. A. Boitsev; H. Neidhardt; I. Yu. Popov. Weyl function for sum of operators tensor products. Nanosistemy: fizika, himiâ, matematika, Tome 4 (2013) no. 6, pp. 747-759. http://geodesic.mathdoc.fr/item/NANO_2013_4_6_a1/