Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 261-265
Voir la notice de l'article provenant de la source Math-Net.Ru
A topological space $X$ is said to be homogeneous if for any $x, y\in X$ there exists a self-homeomorphism $f$ of $X$ such that $f(x)=y$.
We propose a method for constructing topological spaces representable as a union of $n$ but not fewer homogeneous subspaces, where $n$ is an arbitrary given positive integer. Further, we present a solution of a similar problem for the case of infinitely many summands.
Keywords:
homogeneous topological space, topological sum of spaces, small inductive dimension.
@article{MZM_2024_116_2_a7,
author = {S. M. Komov},
title = {Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces},
journal = {Matemati\v{c}eskie zametki},
pages = {261--265},
publisher = {mathdoc},
volume = {116},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/}
}
TY - JOUR AU - S. M. Komov TI - Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces JO - Matematičeskie zametki PY - 2024 SP - 261 EP - 265 VL - 116 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/ LA - ru ID - MZM_2024_116_2_a7 ER -
S. M. Komov. Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 261-265. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/