Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_116_2_a7, author = {S. M. Komov}, title = {Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces}, journal = {Matemati\v{c}eskie zametki}, pages = {261--265}, publisher = {mathdoc}, volume = {116}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/} }
TY - JOUR AU - S. M. Komov TI - Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces JO - Matematičeskie zametki PY - 2024 SP - 261 EP - 265 VL - 116 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/ LA - ru ID - MZM_2024_116_2_a7 ER -
S. M. Komov. Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 261-265. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/
[1] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR
[2] A. V. Arhangel'skii, J. van Mil, “Topological homogeneity”, Recent Progress in General Topology. III, Atlantis Press, Paris, 2014, 1–68 | MR
[3] A. V. Arkhangelskii, “Topologicheskaya odnorodnost. Topologicheskie gruppy i ikh nepreryvnye obrazy”, UMN, 42:2 (254) (1987), 69–105 | MR | Zbl