Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 261-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological space $X$ is said to be homogeneous if for any $x, y\in X$ there exists a self-homeomorphism $f$ of $X$ such that $f(x)=y$. We propose a method for constructing topological spaces representable as a union of $n$ but not fewer homogeneous subspaces, where $n$ is an arbitrary given positive integer. Further, we present a solution of a similar problem for the case of infinitely many summands.
Keywords: homogeneous topological space, topological sum of spaces, small inductive dimension.
@article{MZM_2024_116_2_a7,
     author = {S. M. Komov},
     title = {Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {261--265},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/}
}
TY  - JOUR
AU  - S. M. Komov
TI  - Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces
JO  - Matematičeskie zametki
PY  - 2024
SP  - 261
EP  - 265
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/
LA  - ru
ID  - MZM_2024_116_2_a7
ER  - 
%0 Journal Article
%A S. M. Komov
%T Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces
%J Matematičeskie zametki
%D 2024
%P 261-265
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/
%G ru
%F MZM_2024_116_2_a7
S. M. Komov. Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 261-265. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a7/

[1] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR

[2] A. V. Arhangel'skii, J. van Mil, “Topological homogeneity”, Recent Progress in General Topology. III, Atlantis Press, Paris, 2014, 1–68 | MR

[3] A. V. Arkhangelskii, “Topologicheskaya odnorodnost. Topologicheskie gruppy i ikh nepreryvnye obrazy”, UMN, 42:2 (254) (1987), 69–105 | MR | Zbl