Generalized one-dimensional Dunkl transform in direct problems of approximation theory
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 245-260

Voir la notice de l'article provenant de la source Math-Net.Ru

On the real line, we study the generalized Dunkl harmonic analysis depending on a parameter $r\in\mathbb{N}$. The case of $r=0$ corresponds to the usual Dunkl harmonic analysis. All constructions depend on the parameter $r\geqslant 1$. The differences and the moduli of smoothness are defined using a generalized translation operator. The Sobolev space and the $K$-functional are defined using a differential-difference operator. An approximate Jackson-type inequality is proved. The equivalence of the $K$-functional and the modulus of smoothness is established.
Keywords: generalized Dunkl transform, generalized translation operator, convolution, $K$-functional, modulus of smoothness, Jackson inequality.
@article{MZM_2024_116_2_a6,
     author = {V. I. Ivanov},
     title = {Generalized one-dimensional {Dunkl} transform in direct problems of approximation theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {245--260},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a6/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Generalized one-dimensional Dunkl transform in direct problems of approximation theory
JO  - Matematičeskie zametki
PY  - 2024
SP  - 245
EP  - 260
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a6/
LA  - ru
ID  - MZM_2024_116_2_a6
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Generalized one-dimensional Dunkl transform in direct problems of approximation theory
%J Matematičeskie zametki
%D 2024
%P 245-260
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a6/
%G ru
%F MZM_2024_116_2_a6
V. I. Ivanov. Generalized one-dimensional Dunkl transform in direct problems of approximation theory. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a6/