A refinement of the two-radius theorem on the Bessel--Kingman hypergroup
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 212-228

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study an equation of the form $$ \int_{0}^{r}T^\alpha_yf(x)x^{2\alpha+1}\,dx=0, \qquad |y| R-r, \quad 0, $$ where $\alpha>-1/2$, $T^\alpha_y$ is the generalized Bessel translation operator, and $f$ is an even function locally integrable with respect to the measure $|x|^{2\alpha+1}\,dx$ on the interval $(-R,R)$. A description of the solutions of this equation in the form of series in special functions is obtained. Based on this result, we completely study the existence of a nonzero solution of a system of two such equations.
Keywords: generalized translation
Mots-clés : convolution equation, Fourier–Bessel transform.
@article{MZM_2024_116_2_a3,
     author = {Vit. V. Volchkov and G. V. Krasnoschyokikh},
     title = {A refinement of the two-radius theorem on the {Bessel--Kingman} hypergroup},
     journal = {Matemati\v{c}eskie zametki},
     pages = {212--228},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a3/}
}
TY  - JOUR
AU  - Vit. V. Volchkov
AU  - G. V. Krasnoschyokikh
TI  - A refinement of the two-radius theorem on the Bessel--Kingman hypergroup
JO  - Matematičeskie zametki
PY  - 2024
SP  - 212
EP  - 228
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a3/
LA  - ru
ID  - MZM_2024_116_2_a3
ER  - 
%0 Journal Article
%A Vit. V. Volchkov
%A G. V. Krasnoschyokikh
%T A refinement of the two-radius theorem on the Bessel--Kingman hypergroup
%J Matematičeskie zametki
%D 2024
%P 212-228
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a3/
%G ru
%F MZM_2024_116_2_a3
Vit. V. Volchkov; G. V. Krasnoschyokikh. A refinement of the two-radius theorem on the Bessel--Kingman hypergroup. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 212-228. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a3/