A refinement of the two-radius theorem on the Bessel--Kingman hypergroup
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 212-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study an equation of the form $$ \int_{0}^{r}T^\alpha_yf(x)x^{2\alpha+1}\,dx=0, \qquad |y| R-r, \quad 0, $$ where $\alpha>-1/2$, $T^\alpha_y$ is the generalized Bessel translation operator, and $f$ is an even function locally integrable with respect to the measure $|x|^{2\alpha+1}\,dx$ on the interval $(-R,R)$. A description of the solutions of this equation in the form of series in special functions is obtained. Based on this result, we completely study the existence of a nonzero solution of a system of two such equations.
Keywords: generalized translation
Mots-clés : convolution equation, Fourier–Bessel transform.
@article{MZM_2024_116_2_a3,
     author = {Vit. V. Volchkov and G. V. Krasnoschyokikh},
     title = {A refinement of the two-radius theorem on the {Bessel--Kingman} hypergroup},
     journal = {Matemati\v{c}eskie zametki},
     pages = {212--228},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a3/}
}
TY  - JOUR
AU  - Vit. V. Volchkov
AU  - G. V. Krasnoschyokikh
TI  - A refinement of the two-radius theorem on the Bessel--Kingman hypergroup
JO  - Matematičeskie zametki
PY  - 2024
SP  - 212
EP  - 228
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a3/
LA  - ru
ID  - MZM_2024_116_2_a3
ER  - 
%0 Journal Article
%A Vit. V. Volchkov
%A G. V. Krasnoschyokikh
%T A refinement of the two-radius theorem on the Bessel--Kingman hypergroup
%J Matematičeskie zametki
%D 2024
%P 212-228
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a3/
%G ru
%F MZM_2024_116_2_a3
Vit. V. Volchkov; G. V. Krasnoschyokikh. A refinement of the two-radius theorem on the Bessel--Kingman hypergroup. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 212-228. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a3/

[1] G. L. Litvinov, “Hypergroups and hypergroup algebras”, J. Soviet Math., 38:2 (1987), 1734–1761 | DOI | MR

[2] Yu. M. Berezansky, A. A. Kalyuzhny, Harmonic Analysis in Hypercomplex Systems, Math. Appl., 434, Springer, Dordrecht, 1998 | MR

[3] B. Selmi, M. M. Nessibi, “A local two radii theorem on the Chébli-Trimèche hypergroup”, J. Math. Anal. Appl., 329:1 (2007), 163–190 | DOI | MR

[4] J. Delsarte, “Note sur une propriété nouvelle des fonctions harmoniques”, C. R. Acad. Sci. Paris, 246 (1958), 1358–1360 | MR

[5] L. Zalcman, “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47 (1972), 237–254 | DOI | MR

[6] J. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR

[7] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations (Hanstholm, 1991), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 365, Kluwer, Dordrecht, 1992, 185–194 | MR

[8] L. Zalcman, “Supplementary bibliography to: “A bibliographic survey of the Pompeiu problem””, Radon Transforms and Tomography (South Hadley, MA, 2000), Contemp. Math., 278, Amer. Math. Soc., Providence, RI, 2001, 69–74 | DOI | MR

[9] K. A. Berenstein, D. Struppa, “Kompleksnyi analiz i uravneniya v svertkakh”, Kompleksnyi analiz – mnogie peremennye – 5, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 54, VINITI, M., 1989, 5–111 | MR | Zbl

[10] V. V. Volchkov, Integral Geometry and Convolution Equations, Kluwer, Dordrecht, 2003 | MR

[11] V. V. Volchkov, Vit. V. Volchkov, Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer Monogr. Math., Springer-Verlag, New York–London, 2009 | MR

[12] V. V. Volchkov, Vit. V. Volchkov, Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, New York–London, 2013 | MR

[13] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:4 (1980), 593–621 | DOI | MR

[14] N. Peyerimhoff, E. Samiou, “Spherical spectral synthesis and two-radius theorems on Damek–Ricci spaces”, Ark. Mat., 48:1 (2010), 131–147 | DOI | MR

[15] C. A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR

[16] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. II, Nauka, M., 1974 | MR

[17] Y. Zhou, “Two radius support theorem for the sphere transform”, J. Math. Anal. Appl., 254:1 (2001), 120–137 | DOI | MR

[18] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[19] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special Functions: Group Theoretical Aspects and Applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR

[20] Vit. V. Volchkov, “O funktsiyakh s nulevymi sharovymi srednimi na kompaktnykh dvukhtochechno-odnorodnykh prostranstvakh”, Matem. sb., 198:4 (2007), 21–46 | DOI | MR | Zbl

[21] V. V. Volchkov, “Teoremy edinstvennosti dlya kratnykh lakunarnykh trigonometricheskikh ryadov”, Matem. zametki, 51:6 (1992), 27–31 | MR | Zbl