Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_116_2_a10, author = {V. O. Yankovskiy}, title = {Isometry groups of formal languages for generalized {Levenshtein} distances}, journal = {Matemati\v{c}eskie zametki}, pages = {306--315}, publisher = {mathdoc}, volume = {116}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a10/} }
V. O. Yankovskiy. Isometry groups of formal languages for generalized Levenshtein distances. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 306-315. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a10/
[1] V. I. Levenshtein, “Dvoichnye kody s ispravleniem vypadenii, vstavok i zameschenii simvolov”, Dokl. AN SSSR, 163:4 (1965), 845–848 | MR | Zbl
[2] R. Wagner, M. Fisher, “The string-to-string correction problem”, J. Assoc. Comput. Mach., 21 (1974), 168–178 | DOI | MR
[3] A. A. Markov, “O preobrazovaniyakh, ne rasprostranyayuschikh iskazheniya”, Izbrannye trudy, v. 2, M., 1956, 70–94 | MR
[4] W. C. Huffman, “Codes and groups”, Handbook of Coding Theory, v. 2, North-Holland, Amsterdam, 1998, 1345–1440 | MR
[5] R. Bienert, B. Klopsch, “Automorphism groups of cyclic codes”, J. Algebraic Combin., 31:1 (2010), 33–52 | DOI | MR
[6] P. E. Ruth, M. E. Ladser, Levenshtein graphs: resolvability, automorphisms and determining sets, arXiv: abs/2107.06951
[7] G. Higman, “Ordering by divisibility in abstract algebras”, Proc. London Math. Soc. (3), 2 (1952), 326–336 | DOI | MR
[8] R. Frucht, “Graphs of degree three with a given abstract group”, Canad. J. Math., 1 (1949), 365–378 | DOI | MR