Saturation in Kneser graphs
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 185-194
Voir la notice de l'article provenant de la source Math-Net.Ru
The Kneser graph $\operatorname{KG}(n,2)$ is the graph whose vertices are pairs of elements $\{1,\dots,n\}$ and whose edges are drawn between disjoint pairs. In the present paper, we establish that the triangle saturation number of the Kneser graph is equal to $(3/2)n^2+O(n)$ and also find its exact values for small $n$.
Keywords:
Kneser graph, saturation number, triangle.
@article{MZM_2024_116_2_a1,
author = {S. V. Vakhrushev and M. E. Zhukovskii and A. Yu. Skorkin},
title = {Saturation in {Kneser} graphs},
journal = {Matemati\v{c}eskie zametki},
pages = {185--194},
publisher = {mathdoc},
volume = {116},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a1/}
}
S. V. Vakhrushev; M. E. Zhukovskii; A. Yu. Skorkin. Saturation in Kneser graphs. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 185-194. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a1/