Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_116_2_a0, author = {D. I. Borisov and R. R. Suleimanov}, title = {On operator estimates for elliptic operators with mixed boundary conditions in two-dimensional domains with rapidly oscillating boundary}, journal = {Matemati\v{c}eskie zametki}, pages = {163--184}, publisher = {mathdoc}, volume = {116}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a0/} }
TY - JOUR AU - D. I. Borisov AU - R. R. Suleimanov TI - On operator estimates for elliptic operators with mixed boundary conditions in two-dimensional domains with rapidly oscillating boundary JO - Matematičeskie zametki PY - 2024 SP - 163 EP - 184 VL - 116 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a0/ LA - ru ID - MZM_2024_116_2_a0 ER -
%0 Journal Article %A D. I. Borisov %A R. R. Suleimanov %T On operator estimates for elliptic operators with mixed boundary conditions in two-dimensional domains with rapidly oscillating boundary %J Matematičeskie zametki %D 2024 %P 163-184 %V 116 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a0/ %G ru %F MZM_2024_116_2_a0
D. I. Borisov; R. R. Suleimanov. On operator estimates for elliptic operators with mixed boundary conditions in two-dimensional domains with rapidly oscillating boundary. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 163-184. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a0/
[1] E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Phys., 127, Springer, New York, 1980 | MR
[2] O. A. Oleinik, G. A. Iosifyan, A. S. Shamaev, Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | MR
[3] A. G. Belyaev, A. G. Mikheev, A. S. Shamaev, “Difraktsiya ploskoi volny na bystroostsilliruyuschei poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1258–1272 | MR | Zbl
[4] V. V. Grushin, S. Yu. Dobrokhotov, “Osrednenie v zadache o dlinnykh volnakh na vode nad uchastkom dna s bystrymi ostsillyatsiyami”, Matem. zametki, 95:3 (2014), 359–375 | DOI | MR
[5] V. A. Kozlov, S. A. Nazarov, “Asimptotika spektra zadachi Dirikhle dlya bigarmonicheskogo operatora v oblasti s silno izrezannoi granitsei”, Algebra i analiz, 22:6 (2010), 127–184 | MR | Zbl
[6] S. A. Nazarov, “Asimptotika resheniya i modelirovanie zadachi Dirikhle v uglovoi oblasti s bystroostsilliruyuschei granitsei”, Algebra i analiz, 19:2 (2007), 183–225 | MR | Zbl
[7] S. E. Pastukhova, “Effekt ostsilliruyuschei granitsy pri usrednenii odnoi zadachi klimatizatsii”, Differents. uravneniya, 37:9 (2001), 1216–1222 | MR
[8] Y. Amirat, O. Bodart, G. A. Chechkin, A. L. Piatnitski, “Boundary homogenization in domains with randomly oscillating boundary”, Stochastic Process. Appl., 121:1 (2011), 1–23 | DOI | MR
[9] J. Arrieta, S. Brushi, “Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation”, Discrete Contin. Dyn. Syst. Ser. B, 14:2 (2010), 327–351 | MR
[10] G. R. Barrenechea, P. Le Tallec, F. Valentin, “New wall laws for the unsteady incompressible Navier–Stokes equations on rough domains”, M2AN Math. Model. Numer. Anal., 36:2 (2002), 177–203 | DOI | MR
[11] G. A. Chechkin, A. Friedman, A. L. Piatnitski, “The boundary-value problem in domains with very rapidly oscillating boundary”, J. Math. Anal. Appl., 231:1 (1999), 213–234 | DOI | MR
[12] E. N. Dancer, D. Daners, “Domain perturbation for elliptic equations subject to Robin boundary conditions”, J. Differential Equations, 138:1 (1997), 86–132 | DOI | MR
[13] M. K. Gobbert, C. A. Ringhofer, “An asymptotic analysis for a model of chemical vapor deposition on a microstructured surface”, SIAM J. Appl. Math., 58:3 (1998), 737–752 | DOI | MR
[14] W. Jäger, A. Mikelić, “Couette flows over a rough boundary and drag reduction”, Comm. Math. Phys., 232:3 (2003), 429–455 | DOI | MR
[15] Myong-Hwan Ri, Effective wall-laws for the Stokes equations over curved rough boundaries, arXiv: 1311.0977
[16] N. Neuss, M. Neuss-Radu, A. Mikelić, “Effective laws for the Poisson equation on domains with curved oscillating boundaries”, Appl. Anal., 85:5 (2006), 479–502 | DOI | MR
[17] D. Borisov, G. Cardone, L. Faella, C. Perugia, “Uniform resolvent convergence for strip with fast oscillating boundary.”, J. Differential Equations, 255:12 (2013), 4378–4402 | DOI | MR
[18] D. I. Borisov, “Ob operatornykh otsenkakh dlya ploskikh oblastei s neregulyarnym iskrivleniem granitsy: usloviya Dirikhle i Neimana”, Probl. mat. anal., 116 (2022), 69–84 | MR
[19] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[20] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Iz-vo Mosk. un-ta, M., 1967, 209–292 | MR | Zbl
[21] S. E. Pastukhova, “Ob otsenkakh usredneniya dlya singulyarno vozmuschennykh operatorov”, Probl. mat. anal., 106 (2020), 149–168 | MR
[22] G. Griso, “Interior error estimate for periodic homogenization”, Anal. Appl. (Singap.), 4:1 (2006), 61–79 | DOI | MR
[23] N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898 | DOI | MR
[24] T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic systems: $L_2$-operator error estimates”, Mathematika, 59:2 (2013), 463–476 | DOI | MR
[25] T. A. Suslina, “Homogenization of the Neumann problem for elliptic systems with periodic coefficients”, SIAM J. Math. Anal., 45:6 (2013), 3453–3493 | DOI | MR