On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 139-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies how the statement of boundary value problems for a generalized Cauchy–Riemann equation is affected by nonisolated singularities in a lower-order coefficient of the equation assuming that these singularities are pairwise disjoint and do not pass through the origin. It turns out that posing only a condition on the boundary of the domain is insufficient in such problems. Therefore, we consider a case combining elements of the Riemann–Hilbert problem on the boundary of the domain and a linear transmission problem on the circles supporting the singularities in the lower-order coefficient inside the domain.
Keywords: generalized Cauchy–Riemann equation, singularity in a lower-order coefficient, Pompeiu–Vekua operator, Riemann–Hilbert problem, linear transmission problem.
@article{MZM_2024_116_1_a9,
     author = {A. B. Rasulov and Yu. S. Fedorov},
     title = {On a statement of the boundary value problem for a generalized {Cauchy--Riemann} equation with nonisolated singularities in a lower-order coefficient},
     journal = {Matemati\v{c}eskie zametki},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/}
}
TY  - JOUR
AU  - A. B. Rasulov
AU  - Yu. S. Fedorov
TI  - On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient
JO  - Matematičeskie zametki
PY  - 2024
SP  - 139
EP  - 151
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/
LA  - ru
ID  - MZM_2024_116_1_a9
ER  - 
%0 Journal Article
%A A. B. Rasulov
%A Yu. S. Fedorov
%T On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient
%J Matematičeskie zametki
%D 2024
%P 139-151
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/
%G ru
%F MZM_2024_116_1_a9
A. B. Rasulov; Yu. S. Fedorov. On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 139-151. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/

[1] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR

[2] L. G. Mikhailov, Novyi klass osobykh integralnykh uravnenii i ego primenenie k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Tadzhik NIINTI, Dushanbe, 1963 | MR

[3] Z. D. Usmanov, Obobschennye sistemy Koshi–Rimana s singulyarnoi tochkoi, Izd-vo AN Tadzh SSR, Dushanbe, 1993 | MR

[4] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[5] N. R. Radzhabov, Vvedenie v teoriyu differentsialnykh uravnenii v chastnykh proizvodnykh so sverkhsingulyarnymi koeffitsientami, Izd-vo TGU, Dushanbe, 1992

[6] A. Meziani, “Representation of solutions of a singular Cauchy–Riemann equation in the plane”, Complex Var. Elliptic Equ., 53:12 (2008), 1111–1130 | DOI | MR

[7] S. A. Abdymanapov, A. B. Tungatarov, Some Classes of Elliptic Systems in the Plane with Singular Coefficients, Nauka, Almaty, 2005

[8] M. V. Korovina, “Differentsialnye uravneniya s konicheskim vyrozhdeniem v prostranstvakh s asimptotikami”, Differents. uravneniya, 45:9 (2009), 1249–1258 | DOI | MR

[9] S. B. Klimentov, “Ob izgibaniyakh modelnoi poverkhnosti polozhitelnoi krivizny s izolirovannoi tochkoi uploscheniya”, Izv. VUZ. Sev.-Kav. region. Est. nauki, 4 (1997), 13–21 | MR

[10] O. M. Geints, Yu. I. Solovev, “Napryazhennoe sostoyanie uprugogo prostranstva s toroidalnoi polostyu”, Prikl. mekh. tekhn. fiz., 45:1 (2004), 73–83 | MR

[11] H. Begehr, Dao-Qing Dai, “On continuous solutions of a generalized Cauchy–Riemann system with more than one singularity”, J. Differential Equations, 196 (2004), 67–90 | DOI | MR

[12] A. B. Rasulov, A. P. Soldatov, “Kraevaya zadacha dlya obobschennogo uravneniya Koshi–Rimana s singulyarnymi koeffitsientami”, Differents. uravneniya, 52:5 (2016), 637–650 | DOI | MR

[13] A. B. Rasulov, “Predstavlenie obschego resheniya uravneniya tipa Koshi–Rimana ssverkhsingulyarnoi okruzhnostyu i osoboi tochkoi”, Differents. uravneniya, 53:6 (2017), 814–822 | DOI | MR

[14] A. B. Rasulov, M. A. Bobodzhonova, Yu. S. Fedorov, “Predstavlenie obschego resheniya uravneniya tipa Koshi–Rimana s singulyarnoi okruzhnostyu i osoboi tochkoi”, Differents. uravneniya protsessy upr., 3 (2016), 1–16 | MR

[15] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[16] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR

[17] A. P. Soldatov, “Kpaevaya zadacha lineinogo soppyazheniya teopii funktsii”, Izv. AH SSSR. Sep. mat., 1 (1979), 184–202 | MR

[18] A. P. Soldatov, “Singulyarnye integralnye operatory i ellipticheskie kraevye zadachi. I”, SMFN, 63:1 (2017), 1–189 | DOI | MR

[19] R. Pale, Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970 | MR