On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 139-151
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies how the statement of boundary value problems for a generalized Cauchy–Riemann equation is affected by nonisolated singularities in a lower-order coefficient of the equation assuming that these singularities are pairwise disjoint and do not pass through the origin. It turns out that posing only a condition on the boundary of the domain is insufficient in such problems. Therefore, we consider a case combining elements of the Riemann–Hilbert problem on the boundary of the domain and a linear transmission problem on the circles supporting the singularities in the lower-order coefficient inside the domain.
Keywords:
generalized Cauchy–Riemann equation, singularity in a lower-order coefficient, Pompeiu–Vekua operator, Riemann–Hilbert problem, linear transmission problem.
@article{MZM_2024_116_1_a9,
author = {A. B. Rasulov and Yu. S. Fedorov},
title = {On a statement of the boundary value problem for a generalized {Cauchy--Riemann} equation with nonisolated singularities in a lower-order coefficient},
journal = {Matemati\v{c}eskie zametki},
pages = {139--151},
publisher = {mathdoc},
volume = {116},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/}
}
TY - JOUR AU - A. B. Rasulov AU - Yu. S. Fedorov TI - On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient JO - Matematičeskie zametki PY - 2024 SP - 139 EP - 151 VL - 116 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/ LA - ru ID - MZM_2024_116_1_a9 ER -
%0 Journal Article %A A. B. Rasulov %A Yu. S. Fedorov %T On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient %J Matematičeskie zametki %D 2024 %P 139-151 %V 116 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/ %G ru %F MZM_2024_116_1_a9
A. B. Rasulov; Yu. S. Fedorov. On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 139-151. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/