Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_116_1_a9, author = {A. B. Rasulov and Yu. S. Fedorov}, title = {On a statement of the boundary value problem for a generalized {Cauchy--Riemann} equation with nonisolated singularities in a lower-order coefficient}, journal = {Matemati\v{c}eskie zametki}, pages = {139--151}, publisher = {mathdoc}, volume = {116}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/} }
TY - JOUR AU - A. B. Rasulov AU - Yu. S. Fedorov TI - On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient JO - Matematičeskie zametki PY - 2024 SP - 139 EP - 151 VL - 116 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/ LA - ru ID - MZM_2024_116_1_a9 ER -
%0 Journal Article %A A. B. Rasulov %A Yu. S. Fedorov %T On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient %J Matematičeskie zametki %D 2024 %P 139-151 %V 116 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/ %G ru %F MZM_2024_116_1_a9
A. B. Rasulov; Yu. S. Fedorov. On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 139-151. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/
[1] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR
[2] L. G. Mikhailov, Novyi klass osobykh integralnykh uravnenii i ego primenenie k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Tadzhik NIINTI, Dushanbe, 1963 | MR
[3] Z. D. Usmanov, Obobschennye sistemy Koshi–Rimana s singulyarnoi tochkoi, Izd-vo AN Tadzh SSR, Dushanbe, 1993 | MR
[4] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR
[5] N. R. Radzhabov, Vvedenie v teoriyu differentsialnykh uravnenii v chastnykh proizvodnykh so sverkhsingulyarnymi koeffitsientami, Izd-vo TGU, Dushanbe, 1992
[6] A. Meziani, “Representation of solutions of a singular Cauchy–Riemann equation in the plane”, Complex Var. Elliptic Equ., 53:12 (2008), 1111–1130 | DOI | MR
[7] S. A. Abdymanapov, A. B. Tungatarov, Some Classes of Elliptic Systems in the Plane with Singular Coefficients, Nauka, Almaty, 2005
[8] M. V. Korovina, “Differentsialnye uravneniya s konicheskim vyrozhdeniem v prostranstvakh s asimptotikami”, Differents. uravneniya, 45:9 (2009), 1249–1258 | DOI | MR
[9] S. B. Klimentov, “Ob izgibaniyakh modelnoi poverkhnosti polozhitelnoi krivizny s izolirovannoi tochkoi uploscheniya”, Izv. VUZ. Sev.-Kav. region. Est. nauki, 4 (1997), 13–21 | MR
[10] O. M. Geints, Yu. I. Solovev, “Napryazhennoe sostoyanie uprugogo prostranstva s toroidalnoi polostyu”, Prikl. mekh. tekhn. fiz., 45:1 (2004), 73–83 | MR
[11] H. Begehr, Dao-Qing Dai, “On continuous solutions of a generalized Cauchy–Riemann system with more than one singularity”, J. Differential Equations, 196 (2004), 67–90 | DOI | MR
[12] A. B. Rasulov, A. P. Soldatov, “Kraevaya zadacha dlya obobschennogo uravneniya Koshi–Rimana s singulyarnymi koeffitsientami”, Differents. uravneniya, 52:5 (2016), 637–650 | DOI | MR
[13] A. B. Rasulov, “Predstavlenie obschego resheniya uravneniya tipa Koshi–Rimana ssverkhsingulyarnoi okruzhnostyu i osoboi tochkoi”, Differents. uravneniya, 53:6 (2017), 814–822 | DOI | MR
[14] A. B. Rasulov, M. A. Bobodzhonova, Yu. S. Fedorov, “Predstavlenie obschego resheniya uravneniya tipa Koshi–Rimana s singulyarnoi okruzhnostyu i osoboi tochkoi”, Differents. uravneniya protsessy upr., 3 (2016), 1–16 | MR
[15] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR
[16] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR
[17] A. P. Soldatov, “Kpaevaya zadacha lineinogo soppyazheniya teopii funktsii”, Izv. AH SSSR. Sep. mat., 1 (1979), 184–202 | MR
[18] A. P. Soldatov, “Singulyarnye integralnye operatory i ellipticheskie kraevye zadachi. I”, SMFN, 63:1 (2017), 1–189 | DOI | MR
[19] R. Pale, Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970 | MR