On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 139-151

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies how the statement of boundary value problems for a generalized Cauchy–Riemann equation is affected by nonisolated singularities in a lower-order coefficient of the equation assuming that these singularities are pairwise disjoint and do not pass through the origin. It turns out that posing only a condition on the boundary of the domain is insufficient in such problems. Therefore, we consider a case combining elements of the Riemann–Hilbert problem on the boundary of the domain and a linear transmission problem on the circles supporting the singularities in the lower-order coefficient inside the domain.
Keywords: generalized Cauchy–Riemann equation, singularity in a lower-order coefficient, Pompeiu–Vekua operator, Riemann–Hilbert problem, linear transmission problem.
@article{MZM_2024_116_1_a9,
     author = {A. B. Rasulov and Yu. S. Fedorov},
     title = {On a statement of the boundary value problem for a generalized {Cauchy--Riemann} equation with nonisolated singularities in a lower-order coefficient},
     journal = {Matemati\v{c}eskie zametki},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/}
}
TY  - JOUR
AU  - A. B. Rasulov
AU  - Yu. S. Fedorov
TI  - On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient
JO  - Matematičeskie zametki
PY  - 2024
SP  - 139
EP  - 151
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/
LA  - ru
ID  - MZM_2024_116_1_a9
ER  - 
%0 Journal Article
%A A. B. Rasulov
%A Yu. S. Fedorov
%T On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient
%J Matematičeskie zametki
%D 2024
%P 139-151
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/
%G ru
%F MZM_2024_116_1_a9
A. B. Rasulov; Yu. S. Fedorov. On a statement of the boundary value problem for a generalized Cauchy--Riemann equation with nonisolated singularities in a lower-order coefficient. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 139-151. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a9/