Approximation of Riemann--Liouville type integrals on an~interval by methods based on Fourier--Chebyshev sums
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 122-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study approximations of Riemann–Liouville type integrals on the interval $[-1,1]$. The approximation method involves an operator constructed by replacing the density of the integral with partial sums of Fourier–Chebyshev series. Integral representations and estimates of these approximations are established for the cases in which the density belongs to some classes of continuous functions. The estimates substantially depend on the position of the point on the interval.
Keywords: Riemann–Liouville integral, Fourier–Chebyshev sum, uniform approximation, asymptotic estimate, Laplace method, functions with power-type singularities.
@article{MZM_2024_116_1_a8,
     author = {P. G. Potseiko and Y. A. Rovba},
     title = {Approximation of {Riemann--Liouville} type integrals on an~interval by methods based on {Fourier--Chebyshev} sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {122--138},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a8/}
}
TY  - JOUR
AU  - P. G. Potseiko
AU  - Y. A. Rovba
TI  - Approximation of Riemann--Liouville type integrals on an~interval by methods based on Fourier--Chebyshev sums
JO  - Matematičeskie zametki
PY  - 2024
SP  - 122
EP  - 138
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a8/
LA  - ru
ID  - MZM_2024_116_1_a8
ER  - 
%0 Journal Article
%A P. G. Potseiko
%A Y. A. Rovba
%T Approximation of Riemann--Liouville type integrals on an~interval by methods based on Fourier--Chebyshev sums
%J Matematičeskie zametki
%D 2024
%P 122-138
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a8/
%G ru
%F MZM_2024_116_1_a8
P. G. Potseiko; Y. A. Rovba. Approximation of Riemann--Liouville type integrals on an~interval by methods based on Fourier--Chebyshev sums. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 122-138. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a8/

[1] K. Kaewnimit, F. Wannalookkhee, K. Nonlaopon, S. Orankitjaroen, “The solutions of some Riemann–Liouville fractional integral equations”, Fractal and fractional, 5:154 (2021) | DOI

[2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR

[3] Yu. I. Babenko, Metod drobnogo differentsirovaniya v prikladnykh zadachakh teorii teplomassoobmena, NPO “Professional”, SPb., 2009

[4] D. A. Zenyuk, Yu. N. Orlov, O primenenii drobnogo ischisleniya Rimana–Liuvillya dlya opisaniya raspredelenii veroyatnostei, Preprinty IPM im. M. V. Keldysha, No942, M., 2014

[5] A. Atangana, J. F. Gómez-Aguilar, “Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann–Liouville to Atangana–Baleanu”, Numer. Methods Partial Differential Equations, 34:5 (2017), 1502–1523 | DOI | MR

[6] K. M. Owolabi, A. Atangana, “Numerical approximation of Riemann–Liouville differentiation”, Numerical Methods for Fractional Differentiation, Springer Ser. Comput. Math., 54, Springer, Singapore, 2019, 139–160 | DOI | MR

[7] T. Marinov, N. Ramirez, F. Santamaria, “Fractional integration toolbox”, Fract. Calc. Appl. Anal., 16:3 (2013), 670–681 | DOI | MR

[8] L. Khitri-Kazi-Tani, H. Dib, “On the approximation of Riemann–Liouville integral by fractional nabla $h$-sum and applications”, Mediterr. J. Math., 14 (2017), 86 | DOI | MR

[9] S. M. Nikolskii, “O nailuchshem priblizhenii funktsii, $s$-aya proizvodnaya kotoroi imeet razryvy pervogo roda”, Dokl. AN SSSR, 55:2 (1947), 99–102

[10] A. A. Tyuleneva, “Priblizhenie integralov Rimana–Liuvillya algebraicheskimi polinomami na otrezke”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:3 (2014), 305–311 | DOI

[11] E. A. Rovba, “Priblizhenie funktsii, differentsiruemykh v smysle Rimana–Liuvillya, ratsionalnymi operatorami”, Dokl. NAN Belarusi, 40:6 (1996), 18–22 | MR

[12] K. A. Smotritskii, “Approksimatsiya ratsionalnymi operatorami Valle-Pussena na otrezke”, Trudy Inst. mat. NAN Belarusi, 9 (2001), 110–114

[13] K. A. Smotritskii, “O priblizhenii differentsiruemykh v smysle Rimana–Liuvillya funktsii”, Bect. NAN Belarusi Ser. fiz.-mat. nauk, 4 (2002), 42–47 | MR

[14] A. P. Starovoitov, “Ratsionalnye priblizheniya drobnykh integralov Rimana–Liuvillya i Veilya”, Matem. zametki, 78:3 (2005), 428–441 | DOI | MR | Zbl

[15] I. V. Rybachenko, “Ratsionalnaya interpolyatsiya funktsii s proizvodnoi Rimana–Liuvillya iz $L_p$”, Vest. Belorus. Gos. Un-ta. Ser. 1. Fiz. Matem. Inf., 2 (2006), 69–74 | MR

[16] A. P. Starovoitov, “Sravnenie skorostei ratsionalnykh i polinomialnykh approksimatsii differentsiruemykh funktsii”, Matem. zametki, 44:4 (1988), 528–535 | MR | Zbl

[17] S. Pashkovskii, Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M, 1983 | MR

[18] N. I. Vasilev, Yu. A. Klokov, A. Ya. Shkerstena, Primenenie polinomov Chebysheva v chislennom analize, Zinatne, Riga, 1984 | MR

[19] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Fizmatlit, M., 2005 | MR

[20] S. V. Marfitsyn, V. P. Marfitsyn, “Primenenie polinomov Chebysheva 1-go roda dlya opisaniya ustoichivykh sostoyanii metalla pri postoyannykh i peremennykh nagruzkakh”, Vest. Kurg. gosun-ta. Ser. tekhn. nauki, 3:1 (2016), 96–98

[21] I. M. Ganzburg, “O priblizhenii funktsii s zadannym modulem nepreryvnosti summami P. L. Chebysheva”, Dokl. AN SSSR, 91:6 (1953), 1253–1256 | MR

[22] V. M. Badkov, “Priblizhenie funktsii v ravnomernoi metrike summami Fure po ortogonalnym polinomam”, Priblizhenie funktsii polinomami i splainami, Sbornik statei, Tr. MIAN SSSR, 145, 1980, 20–62 | MR | Zbl

[23] S. G. Selivanova, “Asimptoticheskie otsenki priblizhenii differentsiruemykh neperiodicheskikh funktsii summami Chebysheva”, Dokl. AN SSSR, 105:4 (1955), 648–651 | MR

[24] A. F. Timan, L. I. Tuchinskii, “Priblizhenie differentsiruemykh funktsii, zadannykh na konechnom otrezke algebraicheskimi mnogochlenami”, Dokl. AN SSSR, 111:4 (1956), 771–773 | MR

[25] R. A. Raitsin, “O ryadakh Fure–Chebysheva odnogo klassa funktsii”, Izv. vuzov. Matem., 1988, no. 10, 79–81 | MR | Zbl

[26] T. Miyakoda, “Direct discretization of the fractional-order differential by using Chebyshev series expansion”, PAMM Proc. Appl. Math. Mech, 7:1 (2007), 2020011–2020012 | DOI

[27] T. Yu. Gorskaya, A. F. Galimyanov, “Approksimatsiya drobnykh integralov chastnymi summami ryada Fure”, Izv. Kazan. gos. arkh.-str. un.-ta, 3:41 (2017), 261–265

[28] A. Galimyanov, T. Gorskaya, “Calculation of fractional integrals using partial sums of Fourier series for structural mechanics problems”, E3S Web of Conferences, 274 (2021), 03011 | DOI

[29] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979 | MR

[30] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR

[31] M. V. Fedoryuk, Asimptotika. Integraly i ryady, Fizmatlit, M., 1987 | MR

[32] V. T. Pinkevich, “O poryadke ostatochnogo chlena ryada Fure funktsii, differentsiruemykh v smysle Weyl'ya”, Izv. AN SSSR. Ser. matem., 4:6 (1940), 521–528 | MR | Zbl

[33] O. V. Besov, “Otsenka priblizheniya periodicheskikh funktsii summami Fure”, Matem. zametki, 79:5 (2006), 784–787 | DOI | MR | Zbl

[34] O. V. Besov, Lektsii po matematicheskomu analizu, Nauka, M., 2020

[35] G. G. Lorentz, M. V. Golitschek, Y. Makovoz, Constructive Approximation. Advanced Problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996 | MR

[36] W. Liu, L.-L. Wang, B. Wu, “Bernstein-type constants for approximation of $|x|^\alpha$ by partial Fourier–Legendre and Fourier–Chebyshev sums”, J. Approx. Theory, 291:105897 (2023) | MR