On extremal functions in inequalities for entire functions
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 67-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_{\sigma}$, $\sigma>0$, be the class of entire functions of exponential type $\leqslant\sigma$ bounded on the real line. For a number $\tau\in\mathbb{R}$ and a sequence $\{c_k\}_{k\in\mathbb{Z}}$ of complex numbers satisfying the condition $\sum_{k\in\mathbb{Z}}|c_k|+\infty$, the operator $H$ on $B_{\sigma}$ defined by $$ H(f)(x)=\sum_{k\in\mathbb{Z}}c_k f\biggl(x-\tau+\frac{k\pi}{\sigma}\biggr) $$ is considered. Obviously, $$ |H(f)(x)|\leqslant \varkappa \|f\|_{\infty}, \qquad x\in\mathbb{R}, \quad f\in B_{\sigma}, \quad \varkappa=\sum_{k\in\mathbb{Z}} |c_k|. $$ The main purpose of the paper is to describe all extremal functions for this inequality. Theorem 1 proved in the paper asserts that if (1) $\overline{c_{s}}c_{s+1}0$ for some $s\in\mathbb{Z}$ and (2) there exists an $\varepsilon\in\mathbb{C}$ with $|\varepsilon|=1$ such that $\varepsilon c_k (-1)^k\geqslant 0$ for all $k\in\mathbb{Z}$, then the set of all extremal functions for the above inequality coincides with the set of functions of the form $f(t)=\mu e^{i\sigma t}+\nu e^{-i\sigma t}$, $\mu,\nu\in\mathbb{C}$. The proof of Theorem 1 essentially uses Theorem 2, which says that if $f\in B_{\sigma}$ and there exists a point $\xi\in\mathbb{R}$ for which $|f(\xi)|=\|f\|_{\infty}$ and $f(\xi+\pi/\sigma)=-f(\xi)$, then $f(t)=\mu e^{i\sigma t}+\nu e^{-i\sigma t}$, $\mu,\nu\in\mathbb{C}$. Theorem 3 gives general examples of operators satisfying both conditions of Theorem 1. In particular, such is the fractional derivative operator $H(f)(x)=f^{(r,\beta)}(x)$ for $r\geqslant 1$ and $\beta\in\mathbb{R}$.
Keywords: entire function of exponential type, extremal function, positive definite function, Bernstein's inequality, Bernstein–Szegő inequality.
@article{MZM_2024_116_1_a4,
     author = {V. P. Zastavnyi},
     title = {On extremal functions in inequalities for entire functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a4/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - On extremal functions in inequalities for entire functions
JO  - Matematičeskie zametki
PY  - 2024
SP  - 67
EP  - 76
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a4/
LA  - ru
ID  - MZM_2024_116_1_a4
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T On extremal functions in inequalities for entire functions
%J Matematičeskie zametki
%D 2024
%P 67-76
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a4/
%G ru
%F MZM_2024_116_1_a4
V. P. Zastavnyi. On extremal functions in inequalities for entire functions. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 67-76. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a4/

[1] O. L. Vinogradov, “Tochnye otsenki pogreshnostei formul tipa chislennogo differentsirovaniya na klassakh tselykh funktsii konechnoi stepeni”, Sib. matem. zhurn., 48:3 (2007), 538–555 | MR | Zbl

[2] O. L. Vinogradov, “Tochnye neravenstva tipa Bernshteina dlya multiplikatorov Fure–Danklya”, Matem. sb., 214:1 (2023), 3–30 | DOI | MR

[3] V. V. Arestov, P. Yu. Glazyrina, “Neravenstvo Bernshteina–Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 20:1 (2014), 17–31 | MR

[4] D. V. Gorbachev, “Konstanty Nikolskogo - Bernshteina dlya neotritsatelnykh tselykh funktsii eksponentsialnogo tipa na osi”, Tr. IMM UrO RAN, 24:4 (2018), 92–103 | DOI | MR

[5] D. V. Gorbachev, “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110 | DOI | MR

[6] V. V. Arestov, “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl

[7] V. P. Zastavnyi, “Ob ekstremalnykh trigonometricheskikh polinomakh”, Tr. IMM UrO RAN, 29:4 (2023), 70–91 | DOI | MR

[8] V. P. Zastavnyi, “Teorema o nulyakh tselykh funktsii i ee primenenie”, Matem. zametki, 75:2 (2004), 192–207 | DOI | MR | Zbl

[9] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[10] R. P. Boas, “The derivative of a trigonometric integral”, J. London Math. Soc., 12:3 (1937), 164–165 | DOI | MR

[11] P. Civin, “Inequalities for trigonometric integrals”, Duke Math. J., 8:4 (1941), 656–665 | DOI | MR

[12] Zh.-P. Kakhan, Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976

[13] P. I. Lizorkin, “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. matem., 29:1 (1965), 109–126 | MR | Zbl

[14] G. Szegö, “Über einen Satz des Herrn Serge Bernstein”, Schriften der Königsberger Gelehrten Gesellschaft, 5:4 (1928), 59–70

[15] G. T. Sokolov, “O nekotorykh ekstremalnykh svoistvakh trigonometricheskikh summ”, Izv. AN SSSR. VII seriya. Otd. matem. estestvennykh nauk, 1935, no. 6-7, 857–884 | Zbl

[16] A. O. Leonteva, “O konstantakh v neravenstve Bernshteina–Sege dlya proizvodnoi Veilya poryadka, menshego edinitsy, trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa v ravnomernoi norme”, Tr. IMM UrO RAN, 29:4 (2023), 130–139 | DOI

[17] V. P. Zastavnyi, R. M. Trigub, “Polozhitelno opredelennye splainy spetsialnogo vida”, Matem. sb., 193:12 (2002), 41–68 | DOI | MR | Zbl

[18] V. P. Zastavnyi, “Positive definite functions and sharp inequalities for periodic functions”, Ural Math. J., 3:2 (2017), 82–99 | DOI | MR

[19] V. P. Zastavnyi, “Integralnye neravenstva dlya periodicheskikh funktsii i kriterii ekstremalnoi funktsii v etikh neravenstvakh”, Vest. Donetskogo nats. un-ta. Ser. A. Estestvennye nauki, 2023, no. 2, 51–57 | MR

[20] E. M. Stein, “Functions of exponential type”, Ann. of Math. (2), 65:3 (1957), 582–592 | DOI | MR