Kirby diagram of polar flows on four-dimensional manifolds
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 45-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the topological classification problem for polar flows on closed four-dimensional manifolds whose set of saddle equilibrium states consists only of points having two-dimensional stable and unstable manifolds. It is shown that the Kirby diagram, which is a framed link on a sphere intersecting the flow trajectories, is a complete topological invariant for such flows.
Keywords: polar flow, gradient-like flow, structurally stable flow, topological classification, Kirby diagram.
@article{MZM_2024_116_1_a3,
     author = {E. Ya. Gurevich and I. A. Saraev},
     title = {Kirby diagram of polar flows on four-dimensional manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {45--66},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a3/}
}
TY  - JOUR
AU  - E. Ya. Gurevich
AU  - I. A. Saraev
TI  - Kirby diagram of polar flows on four-dimensional manifolds
JO  - Matematičeskie zametki
PY  - 2024
SP  - 45
EP  - 66
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a3/
LA  - ru
ID  - MZM_2024_116_1_a3
ER  - 
%0 Journal Article
%A E. Ya. Gurevich
%A I. A. Saraev
%T Kirby diagram of polar flows on four-dimensional manifolds
%J Matematičeskie zametki
%D 2024
%P 45-66
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a3/
%G ru
%F MZM_2024_116_1_a3
E. Ya. Gurevich; I. A. Saraev. Kirby diagram of polar flows on four-dimensional manifolds. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 45-66. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a3/

[1] D. V. Anosov, “Gladkie dinamicheskie sistemy. Gl. 1. Iskhodnye ponyatiya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 156–178

[2] E. A. Leontovich, A. G. Maiep, “O tpaektopiyakh, oppedelyayuschikh kachestvennuyu stpuktupu pazbieniya sfepy na tpaektopii”, Dokl. AN SSSP, 14:5 (1937), 251–257

[3] M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York–London, 1973, 389–419 | MR

[4] G. Fleitas, “Classification of gradient-like flows on dimensions two and three”, Bol. Soc. Brasil. Mat., 6:2 (1975), 155–183 | DOI | MR

[5] Ya. L. Umanskii, “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Matem. sb., 181:2 (1990), 212–239 | MR | Zbl

[6] S. Yu. Pilyugin, “Fazovye diagrammy, opredelyayuschie sistemy Morsa–Smeila bez periodicheskikh traektorii na sferakh”, Differents. uravneniya, 14:2 (1978), 245–254 | MR | Zbl

[7] V. Z. Grines, E. Ya. Gurevich, “Kombinatornyi invariant gradientno-podobnykh potokov na svyaznoi summe $\mathbb{S}^{n-1}\times \mathbb{S}^1$”, Matem. sb., 214:5 (2023), 97–127 | DOI | MR

[8] J. Eells, N. Kuiper, “Manifolds which are like projective planes”, Inst. Hautes Études Sci. Publ. Math., 14 (1962), 5–46 | DOI | MR

[9] E. V. Zhuzhoma, V. S. Medvedev, “Nepreryvnye potoki Morsa–Smeila s tremya sostoyaniyami ravnovesiya”, Matem. sb., 207:5 (2016), 69–92 | DOI | MR

[10] S. Smale, “On gradient dynamical systems”, Ann. of Math. (2), 74 (1961), 199–206 | DOI | MR

[11] K. R. Meyer, “Energy functions for Morse Smale systems”, Amer. J. Math., 90 (1968), 1031–1040 | DOI | MR

[12] R. Kirby, “A calculus for framed links in $S^3$”, Invent. Math., 45:1 (1978), 35–56 | DOI | MR

[13] E. César de Sá, “A link calculus for 4-manifolds”, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math., 722, Springer, Berlin, 1979, 16–30 | DOI | MR

[14] R. Krouell, R. Foks, Vvedenie v teoriyu uzlov, Mir, M., 1967 | MR

[15] D. Rolfsen, Knots and links, Math. Lecture Ser., 7, Publish or Perish, Berkeley, CA, 1976 | MR

[16] G. M. Fisher, “On the group of all homeomorphisms of a manifold”, Trans. Amer. Math. Soc., 97 (1960), 193–212 | DOI | MR

[17] R. Gompf, A. Shtipshits, Chetyrekhmernye mnogoobraziya i ischislenie Kirbi, MTsNMO, M., 2013 | MR

[18] K. Rurk, B. Sanderson, Vvedenie v kusochno-lineinuyu topologiyu, Mir, M., 1974 | MR

[19] V. V. Prasolov, Elementy teorii gomologii, MTsNMO, M., 2006 | MR

[20] C. Earle, J. Eells, “The diffeomorphism group of a compact Riemann surface”, Bull. Amer. Math. Soc., 73 (1967), 557–559 | DOI | MR

[21] M. Khirsh, Differentsialnaya topologiya, Mir, M., 1979 | MR

[22] R. H. Bing, “Locally tame sets are tame”, Ann. of Math. (2), 59:1 (1954), 145–158 | DOI | MR

[23] M. Freedman, “The topology of four-dimensional manifolds”, J. Differential Geometry, 17:3 (1982), 357–453 | MR

[24] F. Laudenbach, V. Poenaru, “A note on 4-dimensional handlebodies”, Bull. Soc. Math. France, 100 (1972), 337–344 | DOI | MR

[25] R. Mandelbaum, Chetyrekhmernaya topologiya, Mir, M., 1981 | MR

[26] C. McA. Gordon, J. Luecke, “Knots are determined by their complements”, J. Amer. Math. Soc., 2:2 (1989), 371–415 | DOI | MR | Zbl

[27] K. Ishihara, “On tunnel number one links with surgeries yielding the 3-sphere”, Osaka J. Math., 47:1 (2010), 189–208 | MR

[28] V. V. Prasolov, Elementy kombinatornoi i differentsialnoi topologii, MTsNMO, M., 2004 | MR

[29] C. F. Gauss, Disquisitiones arithmeticae, Yale University Press, New Haven, 1966 | MR

[30] J. H. Conway, N. J. Sloane, Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, Springer-Verlag, New York, 1988 | MR

[31] D. M. Grobman, “O gomeomorfizme sistem differentsialnykh uravnenii”, Dokl. AN SSSR, 128:5 (1959), 880–881 | MR

[32] D. M. Grobman, “Topologicheskaya klassifikatsiya okrestnostei osoboi tochki v $n$-mernom prostranstve”, Matem. sb., 56 (98):1 (1962), 77–94 | MR | Zbl

[33] P. Hartman, “On the local linearization of differential equations”, Proc. Amer. Math. Soc., 14:4 (1963), 568–573 | DOI | MR

[34] Zh. Palis, V. Di Melu, Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie, Mir, M., 1986 | MR

[35] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[36] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR

[37] V. Z. Grines, E. Ya. Gurevich, “O klassifikatsii potokov Morsa–Smeila na proektivno-podobnykh mnogoobraziyakh”, Izv. RAN. Ser. matem., 86:5 (2022), 43–72 | DOI | MR