Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_115_2_a5, author = {V. G. Danilov}, title = {Asymptotics of {Fundamental} {Solutions} of {Parabolic} {Problems}}, journal = {Matemati\v{c}eskie zametki}, pages = {219--229}, publisher = {mathdoc}, volume = {115}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a5/} }
V. G. Danilov. Asymptotics of Fundamental Solutions of Parabolic Problems. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 219-229. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a5/
[1] V. G. Danilov, S. M. Frolovitchev, “Exact asymptotics of the density of the transition probability for discontinuous Markov processes”, Math. Nachr., 215:1 (2000), 55–90 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[2] V. G. Danilov, “Nonsmooth nonoscillating exponential-type asymptotics for linear parabolic PDE”, SIAM J. Math. Anal., 49:5 (2017), 3550–3572 | DOI | MR
[3] S. A. Molchanov, “Diffuzionnye protsessy i rimanova geometriya”, UMN, 30:1 (181) (1975), 3–59 | MR | Zbl
[4] V. P. Maslov, “Globalnaya eksponentsialnaya asimptotika reshenii tunnelnykh uravnenii i zadachi o bolshikh ukloneniyakh”, Mezhdunarodnaya konferentsiya po analiticheskim metodam v teorii chisel i analize (Moskva, 1981), Tr. MIAN SSSR, 163, 1984, 150–180 | MR | Zbl
[5] V. P. Maslov, G. A. Omel'yanov, Geometric Asymptotics for Nonlinear PDE. I, Transl. Math. Monogr., 202, Amer. Math. Soc., Providence, RI, 2001 | MR
[6] V. P. Maslov, V. E. Nazaikinskii, “Tunnelnyi kanonicheskii operator v termodinamike”, Funkts. analiz i ego pril., 40:3 (2006), 12–29 | DOI | MR | Zbl
[7] V. G. Danilov, “A representation of the delta function via creation operators and Gaussian exponentials, and multiplicative fundamental solution asymptotics for some parabolic pseudodifferential equations”, Russian J. Math. Phys., 3:1 (1995), 25–40 | MR
[8] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[9] V. G. Danilov, D. Mitrovic, “Weak asymptotics of shock wave formation process”, Nonlinear Anal., 61:4 (2005), 613–635 | DOI | MR
[10] P. Cannarsa, H. M. Soner, “On the singularities of the viscosity solutions to Hamilton–Jacobi–Bellman equations”, Indiana Univ. Math. J., 36:3 (1987), 501–524 | DOI | MR
[11] M. G. Crandall, P. L. Lions, “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR
[12] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2017), 53–96 | DOI | MR