The Strong Convexity Supporting Condition and the Lipschitz Condition for the Metric Projection
Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 197-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the strong convexity supporting condition is typical for an arbitrary convex compact set in $\mathbb R^n$. It is shown that, in a certain sense for almost all points, the metric projection onto a convex compact set satisfies the Lipschitz condition with Lipschitz constant strictly less than 1. This condition characterizes the strong convexity supporting condition. The linear convergence of the alternating projection method for a convex compact set with the strong convexity supporting condition and for a proximally smooth set is proved under a certain relation between the constant in the strong convexity supporting condition and the proximal smoothness constant.
Keywords: support condition, support ball, alternating projection method, Hausdorff measure, nonsmooth analysis.
@article{MZM_2024_115_2_a3,
     author = {M. V. Balashov and K. Z. Biglov},
     title = {The {Strong} {Convexity} {Supporting} {Condition} and the {Lipschitz} {Condition} for the {Metric} {Projection}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {197--207},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a3/}
}
TY  - JOUR
AU  - M. V. Balashov
AU  - K. Z. Biglov
TI  - The Strong Convexity Supporting Condition and the Lipschitz Condition for the Metric Projection
JO  - Matematičeskie zametki
PY  - 2024
SP  - 197
EP  - 207
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a3/
LA  - ru
ID  - MZM_2024_115_2_a3
ER  - 
%0 Journal Article
%A M. V. Balashov
%A K. Z. Biglov
%T The Strong Convexity Supporting Condition and the Lipschitz Condition for the Metric Projection
%J Matematičeskie zametki
%D 2024
%P 197-207
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a3/
%G ru
%F MZM_2024_115_2_a3
M. V. Balashov; K. Z. Biglov. The Strong Convexity Supporting Condition and the Lipschitz Condition for the Metric Projection. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 197-207. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a3/

[1] H. Frankowska, C. Olech, “$R$-convexity of the integral of set-valued functions”, Contributions to Analysis and Geometry (Baltimore, 1980), Johns Hopkins Univ. Press, Baltimore, MD, 1981, 117–129 | MR

[2] J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR

[3] E. S. Polovinkin, “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | DOI | MR | Zbl

[4] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007

[5] M. V. Balashov, M. O. Golubev, “About the Lipschitz property of the metric projection in the Hilbert space”, J. Math. Anal. Appl., 394:2 (2012), 545–551 | DOI | MR

[6] M. V. Balashov, “Uslovie Lipshitsa metricheskoi proektsii v gilbertovom prostranstve”, Fundamentalnaya i prikladnaya matematika, 22:1 (2018), 13-29

[7] T. J. Abatzoglou, “The Lipschitz continuity of the metric projection”, J. Approx. Theory, 26:3 (1979), 212–218 | DOI | MR

[8] V. M. Veliov, “On the convexity of integrals of multivalued mappings: applications in control theory”, J. Optim. Theory Appl., 54:3 (1987), 541–563 | DOI | MR

[9] E. S. Levitin, B. T. Polyak, “Metody minimizatsii pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiz., 6:5 (1966), 787–823 | MR | Zbl

[10] M. V. Balashov, “Dostatochnye usloviya lineinoi skhodimosti odnogo algoritma dlya nakhozhdeniya metricheskoi proektsii tochki na vypuklyi kompakt”, Matem. zametki, 113:5 (2023), 655–666 | DOI | MR

[11] A. D. Ioffe, “Metric regularity – a survey. Part 1. Theory”, J. Aust. Math. Soc., 101:2 (2016), 188–243 | DOI | MR

[12] D. R. Luke, “Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space”, SIAM J. Optim., 19:2 (2008), 714–739 | DOI | MR

[13] M. V. Balashov, “Nevypuklaya optimizatsiya”, Teoriya upravleniya (dopolnitelnye glavy), URSS, M., 2019, 259–280

[14] G. E. Ivanov, “Extremal problems for the distance between elements of two sets”, J. Convex Anal., 29:3 (2022), 767–788 | MR

[15] V. I. Bogachev, Measure Theory, v. I, Springer-Verlag, Berlin–Heidelberg, 2007 | MR

[16] J. P. R. Christensen, “On some measures analogous to Haar measure”, Math. Scand., 26 (1970), 103–106 | DOI | MR

[17] R. T. Rokafellar, Vypuklyi analiz, Mir, M., 1973 | MR

[18] M. Reza, “Hausdorff dimension of the nondifferentiability set of a convex function”, Filomat, 31:18 (2017), 5827–5831 | DOI | MR