Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_115_2_a3, author = {M. V. Balashov and K. Z. Biglov}, title = {The {Strong} {Convexity} {Supporting} {Condition} and the {Lipschitz} {Condition} for the {Metric} {Projection}}, journal = {Matemati\v{c}eskie zametki}, pages = {197--207}, publisher = {mathdoc}, volume = {115}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a3/} }
TY - JOUR AU - M. V. Balashov AU - K. Z. Biglov TI - The Strong Convexity Supporting Condition and the Lipschitz Condition for the Metric Projection JO - Matematičeskie zametki PY - 2024 SP - 197 EP - 207 VL - 115 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a3/ LA - ru ID - MZM_2024_115_2_a3 ER -
%0 Journal Article %A M. V. Balashov %A K. Z. Biglov %T The Strong Convexity Supporting Condition and the Lipschitz Condition for the Metric Projection %J Matematičeskie zametki %D 2024 %P 197-207 %V 115 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a3/ %G ru %F MZM_2024_115_2_a3
M. V. Balashov; K. Z. Biglov. The Strong Convexity Supporting Condition and the Lipschitz Condition for the Metric Projection. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 197-207. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a3/
[1] H. Frankowska, C. Olech, “$R$-convexity of the integral of set-valued functions”, Contributions to Analysis and Geometry (Baltimore, 1980), Johns Hopkins Univ. Press, Baltimore, MD, 1981, 117–129 | MR
[2] J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR
[3] E. S. Polovinkin, “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | DOI | MR | Zbl
[4] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007
[5] M. V. Balashov, M. O. Golubev, “About the Lipschitz property of the metric projection in the Hilbert space”, J. Math. Anal. Appl., 394:2 (2012), 545–551 | DOI | MR
[6] M. V. Balashov, “Uslovie Lipshitsa metricheskoi proektsii v gilbertovom prostranstve”, Fundamentalnaya i prikladnaya matematika, 22:1 (2018), 13-29
[7] T. J. Abatzoglou, “The Lipschitz continuity of the metric projection”, J. Approx. Theory, 26:3 (1979), 212–218 | DOI | MR
[8] V. M. Veliov, “On the convexity of integrals of multivalued mappings: applications in control theory”, J. Optim. Theory Appl., 54:3 (1987), 541–563 | DOI | MR
[9] E. S. Levitin, B. T. Polyak, “Metody minimizatsii pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiz., 6:5 (1966), 787–823 | MR | Zbl
[10] M. V. Balashov, “Dostatochnye usloviya lineinoi skhodimosti odnogo algoritma dlya nakhozhdeniya metricheskoi proektsii tochki na vypuklyi kompakt”, Matem. zametki, 113:5 (2023), 655–666 | DOI | MR
[11] A. D. Ioffe, “Metric regularity – a survey. Part 1. Theory”, J. Aust. Math. Soc., 101:2 (2016), 188–243 | DOI | MR
[12] D. R. Luke, “Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space”, SIAM J. Optim., 19:2 (2008), 714–739 | DOI | MR
[13] M. V. Balashov, “Nevypuklaya optimizatsiya”, Teoriya upravleniya (dopolnitelnye glavy), URSS, M., 2019, 259–280
[14] G. E. Ivanov, “Extremal problems for the distance between elements of two sets”, J. Convex Anal., 29:3 (2022), 767–788 | MR
[15] V. I. Bogachev, Measure Theory, v. I, Springer-Verlag, Berlin–Heidelberg, 2007 | MR
[16] J. P. R. Christensen, “On some measures analogous to Haar measure”, Math. Scand., 26 (1970), 103–106 | DOI | MR
[17] R. T. Rokafellar, Vypuklyi analiz, Mir, M., 1973 | MR
[18] M. Reza, “Hausdorff dimension of the nondifferentiability set of a convex function”, Filomat, 31:18 (2017), 5827–5831 | DOI | MR