Estimate for the Rate of Uniform Convergence of the Fourier Series of a Continuous Periodic Function of Bounded~$p$-Variation
Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 286-297

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an estimate for the convergence rate of the Fourier series of a continuous periodic function in terms of the modulus of continuity of the function and the value of its $p$-variation. We prove that the leading term of the estimate is sharp.
Keywords: function of bounded $p$-variation, convergence rate of Fourier series.
@article{MZM_2024_115_2_a11,
     author = {T. Yu. Semenova},
     title = {Estimate for the {Rate} of {Uniform} {Convergence} of the {Fourier} {Series} of a {Continuous} {Periodic} {Function} of {Bounded~}$p${-Variation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {286--297},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a11/}
}
TY  - JOUR
AU  - T. Yu. Semenova
TI  - Estimate for the Rate of Uniform Convergence of the Fourier Series of a Continuous Periodic Function of Bounded~$p$-Variation
JO  - Matematičeskie zametki
PY  - 2024
SP  - 286
EP  - 297
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a11/
LA  - ru
ID  - MZM_2024_115_2_a11
ER  - 
%0 Journal Article
%A T. Yu. Semenova
%T Estimate for the Rate of Uniform Convergence of the Fourier Series of a Continuous Periodic Function of Bounded~$p$-Variation
%J Matematičeskie zametki
%D 2024
%P 286-297
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a11/
%G ru
%F MZM_2024_115_2_a11
T. Yu. Semenova. Estimate for the Rate of Uniform Convergence of the Fourier Series of a Continuous Periodic Function of Bounded~$p$-Variation. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 286-297. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a11/