On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator
Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 170-176

Voir la notice de l'article provenant de la source Math-Net.Ru

M. Demuth and G. Katriel (arXiv: math.SP/0802.2032) proved the finiteness of the sum of negative eigenvalues of the $d$-dimensional Schrödinger operator under certain conditions on the electrical potential for $d\geqslant 4$. They also posed the following question: Is the restriction $d\geqslant 4$ a disadvantage of the method, or does it reflect the actual situation? In the present paper, we prove that the technique in the cited paper also works for the three-dimensional Schrödinger operator with Kato potential whose negative part is an integrable function and that this method does not apply to the two-dimensional Schrödinger operator.
Keywords: sum of negative eigenvalues, Schrödinger operator, Kato potential.
@article{MZM_2024_115_2_a1,
     author = {A. R. Aliev and E. Kh. Eivazov},
     title = {On the {Sum} of {Negative} {Eigenvalues} of the {Three-Dimensional} {Schr\"odinger} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {170--176},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/}
}
TY  - JOUR
AU  - A. R. Aliev
AU  - E. Kh. Eivazov
TI  - On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator
JO  - Matematičeskie zametki
PY  - 2024
SP  - 170
EP  - 176
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/
LA  - ru
ID  - MZM_2024_115_2_a1
ER  - 
%0 Journal Article
%A A. R. Aliev
%A E. Kh. Eivazov
%T On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator
%J Matematičeskie zametki
%D 2024
%P 170-176
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/
%G ru
%F MZM_2024_115_2_a1
A. R. Aliev; E. Kh. Eivazov. On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 170-176. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/