On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator
Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 170-176
Voir la notice de l'article provenant de la source Math-Net.Ru
M. Demuth and G. Katriel (arXiv: math.SP/0802.2032) proved the finiteness of the sum of negative eigenvalues of the $d$-dimensional Schrödinger operator under certain conditions on the electrical potential for $d\geqslant 4$. They also posed the following question: Is the restriction $d\geqslant 4$ a disadvantage of the method, or does it reflect the actual situation? In the present paper, we prove that the technique in the cited paper also works for the three-dimensional Schrödinger operator with Kato potential whose negative part is an integrable function and that this method does not apply to the two-dimensional Schrödinger operator.
Keywords:
sum of negative eigenvalues, Schrödinger operator, Kato potential.
@article{MZM_2024_115_2_a1,
author = {A. R. Aliev and E. Kh. Eivazov},
title = {On the {Sum} of {Negative} {Eigenvalues} of the {Three-Dimensional} {Schr\"odinger} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {170--176},
publisher = {mathdoc},
volume = {115},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/}
}
TY - JOUR AU - A. R. Aliev AU - E. Kh. Eivazov TI - On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator JO - Matematičeskie zametki PY - 2024 SP - 170 EP - 176 VL - 115 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/ LA - ru ID - MZM_2024_115_2_a1 ER -
A. R. Aliev; E. Kh. Eivazov. On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 170-176. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/