Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_115_2_a1, author = {A. R. Aliev and E. Kh. Eivazov}, title = {On the {Sum} of {Negative} {Eigenvalues} of the {Three-Dimensional} {Schr\"odinger} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {170--176}, publisher = {mathdoc}, volume = {115}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/} }
TY - JOUR AU - A. R. Aliev AU - E. Kh. Eivazov TI - On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator JO - Matematičeskie zametki PY - 2024 SP - 170 EP - 176 VL - 115 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/ LA - ru ID - MZM_2024_115_2_a1 ER -
A. R. Aliev; E. Kh. Eivazov. On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 170-176. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/
[1] M. Demuth, G. Katriel, On Finiteness of the Sum of Negative Eigenvalues of Schrödinger Operators, arXiv: math.SP/0802.2032
[2] X. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR
[3] A. A. Balinsky, W. D. Evans, Spectral Analysis of Relativistic Operators, Imperial College Press, London, 2011 | MR
[4] A. A. Balinsky, W. D. Evans, R. T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, 2015 | MR
[5] G. V. Rozenblyum, “Raspredelenie diskretnogo spektra singulyarnykh differentsialnykh operatorov”, Dokl. AN SSSR, 202:5 (1972), 1012–1015 | MR | Zbl
[6] E. H. Lieb, W. E. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in Mathematical Physics, Princeton Univ. Press, 1976, 269–303
[7] R. L. Frank, A. Laptev, T. Weidl, Schrödinger Operators: Eigenvalues and Lieb-Thirring Inequalities, Cambridge Stud. Adv. Math., 200, Cambridge Univ. Press, Cambridge, 2022 | MR
[8] T. Kato, “A second look at the essential selfadjointness of the Schrödinger operators”, Physical Reality and Mathematical Description, Reidel, Dordrecht, 1974, 193–201 | MR
[9] T. Kato, “Schrödinger operators with singular potentials”, Israel J. Math., 13 (1972), 135–148 | DOI | MR
[10] I. Knowles, “On the existence of minimal operators for Schrödinger-type differential expressions”, Math. Ann., 233:3 (1978), 221–227 | DOI | MR
[11] Yu. Oroc̆ko, “Self-adjointness of the minimal Schrödinger operator with potential belonging to $L_{1,\mathrm{loc}}$”, Rep. Math. Phys., 15:2 (1979), 163–172 | DOI | MR
[12] S. Fournais, B. Helffer, Spectral Methods in Surface Superconductivity, Progr. Nonlinear Differential Equations Appl., 77, Birkhäuser, Boston, MA, 2010 | DOI | MR
[13] B. Simon, Trace Ideals and Their Applications, London Math. Soc. Lecture Note Ser., 35, Cambridge Univ. Press, Cambridge–New York, 1979 | MR
[14] M. Demuth, G. Katriel, “Eigenvalue inequalities in terms of Schatten norm bounds on differences of semigroups, and application to Schrödinger operators”, Ann. Henri Poincaré, 9:4 (2008), 817–834 | DOI | MR
[15] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier, Amsterdam, 2007 | MR
[16] M. Karuhanga, E. Shargorodsky, “On negative eigenvalues of two-dimensional Schrödinger operators with singular potentials”, J. Math. Phys., 61:5 (2020), 1–26 | DOI | MR
[17] E. H. Eyvazov, “On the properties of the resolvent of two-dimensional magnetic Schrödinger operator”, Azerb. J. Math., 5:1 (2015), 13–28 | MR