On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator
Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 170-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

M. Demuth and G. Katriel (arXiv: math.SP/0802.2032) proved the finiteness of the sum of negative eigenvalues of the $d$-dimensional Schrödinger operator under certain conditions on the electrical potential for $d\geqslant 4$. They also posed the following question: Is the restriction $d\geqslant 4$ a disadvantage of the method, or does it reflect the actual situation? In the present paper, we prove that the technique in the cited paper also works for the three-dimensional Schrödinger operator with Kato potential whose negative part is an integrable function and that this method does not apply to the two-dimensional Schrödinger operator.
Keywords: sum of negative eigenvalues, Schrödinger operator, Kato potential.
@article{MZM_2024_115_2_a1,
     author = {A. R. Aliev and E. Kh. Eivazov},
     title = {On the {Sum} of {Negative} {Eigenvalues} of the {Three-Dimensional} {Schr\"odinger} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {170--176},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/}
}
TY  - JOUR
AU  - A. R. Aliev
AU  - E. Kh. Eivazov
TI  - On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator
JO  - Matematičeskie zametki
PY  - 2024
SP  - 170
EP  - 176
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/
LA  - ru
ID  - MZM_2024_115_2_a1
ER  - 
%0 Journal Article
%A A. R. Aliev
%A E. Kh. Eivazov
%T On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator
%J Matematičeskie zametki
%D 2024
%P 170-176
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/
%G ru
%F MZM_2024_115_2_a1
A. R. Aliev; E. Kh. Eivazov. On the Sum of Negative Eigenvalues of the Three-Dimensional Schr\"odinger Operator. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 170-176. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a1/

[1] M. Demuth, G. Katriel, On Finiteness of the Sum of Negative Eigenvalues of Schrödinger Operators, arXiv: math.SP/0802.2032

[2] X. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[3] A. A. Balinsky, W. D. Evans, Spectral Analysis of Relativistic Operators, Imperial College Press, London, 2011 | MR

[4] A. A. Balinsky, W. D. Evans, R. T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, 2015 | MR

[5] G. V. Rozenblyum, “Raspredelenie diskretnogo spektra singulyarnykh differentsialnykh operatorov”, Dokl. AN SSSR, 202:5 (1972), 1012–1015 | MR | Zbl

[6] E. H. Lieb, W. E. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in Mathematical Physics, Princeton Univ. Press, 1976, 269–303

[7] R. L. Frank, A. Laptev, T. Weidl, Schrödinger Operators: Eigenvalues and Lieb-Thirring Inequalities, Cambridge Stud. Adv. Math., 200, Cambridge Univ. Press, Cambridge, 2022 | MR

[8] T. Kato, “A second look at the essential selfadjointness of the Schrödinger operators”, Physical Reality and Mathematical Description, Reidel, Dordrecht, 1974, 193–201 | MR

[9] T. Kato, “Schrödinger operators with singular potentials”, Israel J. Math., 13 (1972), 135–148 | DOI | MR

[10] I. Knowles, “On the existence of minimal operators for Schrödinger-type differential expressions”, Math. Ann., 233:3 (1978), 221–227 | DOI | MR

[11] Yu. Oroc̆ko, “Self-adjointness of the minimal Schrödinger operator with potential belonging to $L_{1,\mathrm{loc}}$”, Rep. Math. Phys., 15:2 (1979), 163–172 | DOI | MR

[12] S. Fournais, B. Helffer, Spectral Methods in Surface Superconductivity, Progr. Nonlinear Differential Equations Appl., 77, Birkhäuser, Boston, MA, 2010 | DOI | MR

[13] B. Simon, Trace Ideals and Their Applications, London Math. Soc. Lecture Note Ser., 35, Cambridge Univ. Press, Cambridge–New York, 1979 | MR

[14] M. Demuth, G. Katriel, “Eigenvalue inequalities in terms of Schatten norm bounds on differences of semigroups, and application to Schrödinger operators”, Ann. Henri Poincaré, 9:4 (2008), 817–834 | DOI | MR

[15] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier, Amsterdam, 2007 | MR

[16] M. Karuhanga, E. Shargorodsky, “On negative eigenvalues of two-dimensional Schrödinger operators with singular potentials”, J. Math. Phys., 61:5 (2020), 1–26 | DOI | MR

[17] E. H. Eyvazov, “On the properties of the resolvent of two-dimensional magnetic Schrödinger operator”, Azerb. J. Math., 5:1 (2015), 13–28 | MR