Dominant Sets for Model Spaces in Several Variables
Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 162-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $I$ be an inner function in the domain $\mathcal{D}=B_{n_1}\times B_{n_2}\times\dots \times B_{n_k}$, where $B_n$ is the open unit ball in $\mathbb{C}^n$, $n\geqslant 1$. We construct dominant sets for the space $H^2 \ominus I H^2$, where $H^2=H^2(\mathcal{D})$ is the standard Hardy space.
Mots-clés : dominant sets
Keywords: Hardy space, large and small model spaces.
@article{MZM_2024_115_2_a0,
     author = {A. B. Aleksandrov and E. Doubtsov},
     title = {Dominant {Sets} for {Model} {Spaces} in {Several} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {162--169},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
AU  - E. Doubtsov
TI  - Dominant Sets for Model Spaces in Several Variables
JO  - Matematičeskie zametki
PY  - 2024
SP  - 162
EP  - 169
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a0/
LA  - ru
ID  - MZM_2024_115_2_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%A E. Doubtsov
%T Dominant Sets for Model Spaces in Several Variables
%J Matematičeskie zametki
%D 2024
%P 162-169
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a0/
%G ru
%F MZM_2024_115_2_a0
A. B. Aleksandrov; E. Doubtsov. Dominant Sets for Model Spaces in Several Variables. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 162-169. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a0/

[1] W. Rudin, Function Theory in the Unit Ball of ${\mathbf C}^{n}$, Grundlehren der Mathematischen Wissenschaften, 241, Springer-Verlag, New York–Berlin, 1980 | MR

[2] M. Stoll, Invariant Potential Theory in the Unit Ball of ${\mathbf C}^n$, London Math. Soc. Lecture Note Ser., 199, Cambridge Univ. Press, Cambridge, 1994 | MR

[3] N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading, v. 2, Math. Surveys Monogr., 93, Amer. Math. Soc., Providence, RI, 2002 | MR

[4] D. N. Clark, “One dimensional perturbations of restricted shifts”, J. Analyse Math., 25 (1972), 169–191 | DOI | MR

[5] A. Poltoratski, D. Sarason, “Aleksandrov–Clark measures”, Recent Advances in Operator-Related Function Theory, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 1–14 | MR

[6] E. Saksman, “An elementary introduction to Clark measures”, Topics in Complex Analysis and Operator Theory, Univ. Málaga, Málaga, 2007, 85–136 | MR

[7] A. B. Aleksandrov, E. Doubtsov, “Clark measures on the complex sphere”, J. Funct. Anal., 278:2 (2020), 108314 | DOI | MR

[8] A. Blandignères, E. Fricain, F. Gaunard, A. Hartmann, W. Ross, “Reverse Carleson embeddings for model spaces”, J. Lond. Math. Soc. (2), 88:2 (2013), 437–464 | DOI | MR

[9] L. Brown, A. Shields, K. Zeller, “On absolutely convergent exponential sums”, Trans. Amer. Math. Soc., 96 (1960), 162–183 | DOI | MR

[10] A. B. Aleksandrov, “Kratnost granichnykh znachenii vnutrennikh funktsii”, Izv. AN Arm. SSR, 22:5 (1987), 490–503 | MR

[11] A. B. Aleksandrov, E. Doubtsov, “Clark measures and de Branges–Rovnyak spaces in several variables”, Complex Var. Elliptic Equ., 68:2 (2023), 212–221 | DOI | MR

[12] A. G. Poltoratskii, “Granichnoe povedenie psevdoprodolzhimykh funktsii”, Algebra i analiz, 5:2 (1993), 189–210 | MR | Zbl