Periodic Gibbs Measures and Their Extremality for the HC-Blume--Capel Model in the Case of a Wand with a Chemical Potential on a Cayley Tree
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 108-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Periodic Gibbs measures for the HC-Blume–Capel model with a chemical potential with parameters $(\theta,\eta)$ on a Cayley tree in the case of a wand graph are studied. We prove that in this case for $\theta^3\leqslant\eta$ there exist precisely three periodic Gibbs measures, all of which are translation-invariant, while for $\theta^3>\eta$ there exist precisely three periodic Gibbs measures, one of which is translation-invariant and the other two are $2$-periodic (but not translation-invariant). The (non)extremality of these measures is also studied.
Keywords: Cayley tree, HC-Blume–Capel model, Gibbs measure, periodic measure, extremality of measures.
Mots-clés : configuration
@article{MZM_2024_115_1_a7,
     author = {N. M. Khatamov},
     title = {Periodic {Gibbs} {Measures} and {Their} {Extremality} for the {HC-Blume--Capel} {Model} in the {Case} of a {Wand} with a {Chemical} {Potential} on a {Cayley} {Tree}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {108--122},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a7/}
}
TY  - JOUR
AU  - N. M. Khatamov
TI  - Periodic Gibbs Measures and Their Extremality for the HC-Blume--Capel Model in the Case of a Wand with a Chemical Potential on a Cayley Tree
JO  - Matematičeskie zametki
PY  - 2024
SP  - 108
EP  - 122
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a7/
LA  - ru
ID  - MZM_2024_115_1_a7
ER  - 
%0 Journal Article
%A N. M. Khatamov
%T Periodic Gibbs Measures and Their Extremality for the HC-Blume--Capel Model in the Case of a Wand with a Chemical Potential on a Cayley Tree
%J Matematičeskie zametki
%D 2024
%P 108-122
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a7/
%G ru
%F MZM_2024_115_1_a7
N. M. Khatamov. Periodic Gibbs Measures and Their Extremality for the HC-Blume--Capel Model in the Case of a Wand with a Chemical Potential on a Cayley Tree. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 108-122. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a7/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR

[2] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Math., 68, Cambridge Univ. Press, Cambridge, 1974 | MR

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR

[4] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Scientific, Hackensack, NJ, 2013 | MR

[5] A. E. Mazel, Yu. M. Suhov, “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Statist. Phys., 64:1–2 (1991), 111–134 | DOI | MR

[6] Yu. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR

[7] J. B. Martin, “Reconstruction thresholds on regular trees”, Discrete Random Walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. Proc., AC, DMTCS, Nancy, 2003, 191–204 | MR

[8] U. A. Rozikov, R. M. Khakimov, “Krainost translyatsionno-invariantnoi mery Gibbsa dlya NS-modeli na dereve Keli”, Byulleten In-ta matem., 2019, no. 2, 17–22

[9] R. M. Khakimov, “Edinstvennost slabo periodicheskoi gibbsovskoi mery dlya NS-modeli”, Matem. zametki, 94:5 (2013), 796–800 | DOI | MR | Zbl

[10] R. M. Khakimov, “Slabo periodicheskie mery Gibbsa dlya NS-modeli dlya normalnogo delitelya indeksa chetyre”, Ukr. matem. zhurn., 67:10 (2015), 1409–1422 | DOI | MR

[11] R. M. Khakimov, “Slabo periodicheskie mery Gibbsa dlya NS-modelei na dereve Keli”, Sib. matem. zhurn., 59:1 (2018), 185–196 | DOI | MR

[12] G. Brightwell, P. Winkler, “Graph homomorphisms and phase transitions”, J. Combin. Theory Ser. B, 77:2 (1999), 221–262 | DOI | MR

[13] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, “A three state hard-core model on a Cayley tree”, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR

[14] U. A. Rozikov, Sh. A. Shoyusupov, “Plodorodnye HC-modeli s tremya sostoyaniyami na dereve Keli”, TMF, 156:3 (2008), 412–424 | DOI | MR | Zbl

[15] R. M. Khakimov, “Translyatsionno-invariantnye mery Gibbsa dlya plodorodnykh modelei “hard core” s tremya sostoyaniyami na dereve Keli”, TMF, 183:3 (2015), 441–449 | DOI | MR

[16] U. A. Rozikov, R. M. Khakimov, “Gibbs measures for the fertile three-state hard-core models on a Cayley tree”, Queueing Syst., 81:1 (2015), 49–69 | DOI | MR

[17] E. N. Cirillo, E. Olivieri, “Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition”, J. Statist. Phys., 83:3–4 (1996), 473–554 | DOI | MR

[18] P. E. Theodorakis, N. J. Fytas, “Monte Carlo study of the triangular Blume–Capel model under bond randomness”, Physical Review, 86 (2012), 011140

[19] S. Kim, “Metastability of Blume–Capel model with zero chemical potential and zero external field”, J. Stat. Phys., 184:3 (2021), 33 | DOI | MR

[20] N. M. Xatamov, R. M. Xakimov, “Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree”, J. Math. Phys. Anal. Geom., 15:2 (2019), 239–255 | DOI | MR

[21] N. M. Khatamov, “Krainost translyatsionno-invariantnykh mer Gibbsa dlya modeli Blyuma–Kapelya v sluchae “zhezl” na dereve Keli”, Ukr. matem. zhurn., 72:4 (2020), 540–556 | DOI | MR

[22] N. M. Khatamov, “Struktury Khollideya v modeli Blyuma–Kapelya molekuly DNK”, TMF, 206:3 (2021), 439–447 | DOI | MR

[23] N. M. Khatamov, “Holliday junctions in the HC Blume–Capel model in “one case” on DNA”, Nanosystems: physics, chemisry, mathematics, 12:5 (2021), 563–568 | DOI | MR

[24] N. M. Khatamov, “Ekstremalnost mer Gibbsa dlya modeli $HC$-Blyuma–Kapelya na dereve Keli”, Matem. zametki, 111:5 (2022), 762–777 | DOI | MR

[25] N. M. Khatamov, “Ekstremalnost nekotorykh mer Gibbsa dlya $HC$-modeli Blyuma–Kapelya na dereve Keli”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 256–277 | DOI | MR

[26] N. M. Khatamov, “Periodic Gibbs measures and their extremes for the HC-Blume–Capel model in the case of a “wand” on the Cayley tree”, Lobachevskii J. Math., 43:9 (2022), 2515–2524 | DOI | MR

[27] H. Kesten, B. P. Stigum, “Additional limit theorems for indecomposable multidimensional Galton–Watson processes”, Ann. Math. Statist., 37 (1966), 1463–1481 | DOI | MR

[28] F. Martinelli, A. Sinclair, D. Weitz, “Fast mixing for independent sets, colorings, and other models on trees”, Random Structures Algorithms, 31:2 (2007), 134–172 | DOI | MR

[29] C. Külske, U. A. Rozikov, “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures Algorithms, 50:4 (2017), 636–678 | DOI | MR

[30] U. A. Rozikov, R. M. Khakimov, M. T. Makhammadaliev, “Periodicheskie mery Gibbsa dlya NS-modeli s dvumya sostoyaniyami na dereve Keli”, Nauka – tekhnologiya – obrazovanie – matematika – meditsina, SMFN, 68, Rossiiskii universitet druzhby narodov, M., 2022, 95–109 | DOI | MR