On Rational Spline Solutions of Differential Equations with Singularities in the Coefficients of the Derivatives
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 78-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

For one generalization of the Riemann differential equation, we obtain sufficient conditions for the approximability by twice continuously differentiable rational interpolation spline functions. To solve the corresponding boundary value problem numerically, a tridiagonal system of linear algebraic equations is constructed and conditions on the coefficients of the differential equation are found guaranteeing the uniqueness of the solution of such a system. Estimates of the deviation of the discrete solution of the boundary value problem from the exact solution on a grid are presented.
Keywords: approximate solution of differential equation, rational spline function, interpolation spline function.
@article{MZM_2024_115_1_a5,
     author = {V. G. Magomedova and A.-R. K. Ramazanov},
     title = {On {Rational} {Spline} {Solutions} of {Differential} {Equations} with {Singularities} in the {Coefficients} of the {Derivatives}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {78--90},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a5/}
}
TY  - JOUR
AU  - V. G. Magomedova
AU  - A.-R. K. Ramazanov
TI  - On Rational Spline Solutions of Differential Equations with Singularities in the Coefficients of the Derivatives
JO  - Matematičeskie zametki
PY  - 2024
SP  - 78
EP  - 90
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a5/
LA  - ru
ID  - MZM_2024_115_1_a5
ER  - 
%0 Journal Article
%A V. G. Magomedova
%A A.-R. K. Ramazanov
%T On Rational Spline Solutions of Differential Equations with Singularities in the Coefficients of the Derivatives
%J Matematičeskie zametki
%D 2024
%P 78-90
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a5/
%G ru
%F MZM_2024_115_1_a5
V. G. Magomedova; A.-R. K. Ramazanov. On Rational Spline Solutions of Differential Equations with Singularities in the Coefficients of the Derivatives. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 78-90. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a5/

[1] V. I. Smirnov, Kurs vysshei matematiki, v. 2, Nauka, M., 1967 | MR

[2] A. Krattser, F. Frants, Transtsendentnye funktsii, Mir, M., 1963 | MR

[3] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | MR

[4] N. S. Bakhvalov, Chislennye metody, Nauka, M., 1973 | MR

[5] R. Varga, Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR

[6] S. V. Parter, “Numerical methods for generalized axially symmetric potentials”, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 500–516 | MR

[7] P. Jamet, “On the convergence of finite-difference approximations to one-dimensional singular boundary-value problems”, Numer. Math., 14 (1970), 355–378 | DOI | MR

[8] F. Natterer, “A generalized spline method for singular boundary value problems of ordinary differential equations”, Linear Algebra Appl., 7 (1973), 189–216 | DOI | MR

[9] D. C. Brabston, H. B. Keller, “A numerical method for singular two point boundary value problems”, SIAM Journal Numer. Anal., 14:5 (1977), 779–791 | DOI | MR

[10] E. Weinmuller, “A difference method for a singular boundary value problem of second order”, Math. Comput., 42 (1984), 441–464 | DOI | MR

[11] A.-R. K. Ramazanov, V. G. Magomedova, “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 16–28 | DOI

[12] A.-R. K. Ramazanov, V. G. Magomedova, “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Matem. zametki, 103:4 (2018), 592–603 | DOI

[13] V. G. Magomedova, A.-R. K. Ramazanov, “O priblizhennom reshenii differentsialnykh uravnenii s pomoschyu ratsionalnykh splain-funktsii”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 579–586 | DOI | MR