Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_115_1_a5, author = {V. G. Magomedova and A.-R. K. Ramazanov}, title = {On {Rational} {Spline} {Solutions} of {Differential} {Equations} with {Singularities} in the {Coefficients} of the {Derivatives}}, journal = {Matemati\v{c}eskie zametki}, pages = {78--90}, publisher = {mathdoc}, volume = {115}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a5/} }
TY - JOUR AU - V. G. Magomedova AU - A.-R. K. Ramazanov TI - On Rational Spline Solutions of Differential Equations with Singularities in the Coefficients of the Derivatives JO - Matematičeskie zametki PY - 2024 SP - 78 EP - 90 VL - 115 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a5/ LA - ru ID - MZM_2024_115_1_a5 ER -
%0 Journal Article %A V. G. Magomedova %A A.-R. K. Ramazanov %T On Rational Spline Solutions of Differential Equations with Singularities in the Coefficients of the Derivatives %J Matematičeskie zametki %D 2024 %P 78-90 %V 115 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a5/ %G ru %F MZM_2024_115_1_a5
V. G. Magomedova; A.-R. K. Ramazanov. On Rational Spline Solutions of Differential Equations with Singularities in the Coefficients of the Derivatives. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 78-90. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a5/
[1] V. I. Smirnov, Kurs vysshei matematiki, v. 2, Nauka, M., 1967 | MR
[2] A. Krattser, F. Frants, Transtsendentnye funktsii, Mir, M., 1963 | MR
[3] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | MR
[4] N. S. Bakhvalov, Chislennye metody, Nauka, M., 1973 | MR
[5] R. Varga, Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR
[6] S. V. Parter, “Numerical methods for generalized axially symmetric potentials”, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 500–516 | MR
[7] P. Jamet, “On the convergence of finite-difference approximations to one-dimensional singular boundary-value problems”, Numer. Math., 14 (1970), 355–378 | DOI | MR
[8] F. Natterer, “A generalized spline method for singular boundary value problems of ordinary differential equations”, Linear Algebra Appl., 7 (1973), 189–216 | DOI | MR
[9] D. C. Brabston, H. B. Keller, “A numerical method for singular two point boundary value problems”, SIAM Journal Numer. Anal., 14:5 (1977), 779–791 | DOI | MR
[10] E. Weinmuller, “A difference method for a singular boundary value problem of second order”, Math. Comput., 42 (1984), 441–464 | DOI | MR
[11] A.-R. K. Ramazanov, V. G. Magomedova, “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 16–28 | DOI
[12] A.-R. K. Ramazanov, V. G. Magomedova, “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Matem. zametki, 103:4 (2018), 592–603 | DOI
[13] V. G. Magomedova, A.-R. K. Ramazanov, “O priblizhennom reshenii differentsialnykh uravnenii s pomoschyu ratsionalnykh splain-funktsii”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 579–586 | DOI | MR