Sharp~$L^p$-Estimates for the Fourier Transform of Surface Measures
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 51-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

\begin{abstract} We consider estimates for the Fourier transform of measures concentrated on smooth surfaces $S\subset \mathbb{R}^3$ given by the graph of a smooth function with simple Arnold singularities such that both principal curvatures of the surface vanish at some point. We prove that if the multiplicity of the critical point of the function does not exceed $7$, then the Fourier transforms of the corresponding surface measures belong to $L^{p}(\mathbb{ R}^3)$ for any $p>3$. Note that for any smooth surface the Fourier transform of a nontrivial surface measure with compact support does not belong to $L^3(\mathbb{R}^3)$; i.e., the $L^p(\mathbb{R}^3)$-estimate obtained is sharp. Moreover, there exists a function with an $E_8$ singularity (the multiplicity of the critical point of the function is equal to $8$) such that the Fourier transform of the corresponding surface measure does not belong to $L^{22/7}(\mathbb{R}^3)$, which shows the sharpness of the estimate for the multiplicity of the critical point.
Keywords: measure, curvature, integrability.
Mots-clés : Fourier transform, hypersurface
@article{MZM_2024_115_1_a4,
     author = {I. A. Ikromov and D. Ikromova},
     title = {Sharp~$L^p${-Estimates} for the {Fourier} {Transform} of {Surface} {Measures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {51--77},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a4/}
}
TY  - JOUR
AU  - I. A. Ikromov
AU  - D. Ikromova
TI  - Sharp~$L^p$-Estimates for the Fourier Transform of Surface Measures
JO  - Matematičeskie zametki
PY  - 2024
SP  - 51
EP  - 77
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a4/
LA  - ru
ID  - MZM_2024_115_1_a4
ER  - 
%0 Journal Article
%A I. A. Ikromov
%A D. Ikromova
%T Sharp~$L^p$-Estimates for the Fourier Transform of Surface Measures
%J Matematičeskie zametki
%D 2024
%P 51-77
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a4/
%G ru
%F MZM_2024_115_1_a4
I. A. Ikromov; D. Ikromova. Sharp~$L^p$-Estimates for the Fourier Transform of Surface Measures. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 51-77. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a4/

[1] V. P. Palamodov, “Obobschennye funktsii i garmonicheskii analiz”, Kommutativnyi garmonicheskii analiz – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 72, VINITI, M., 1991, 5–134 | MR | Zbl

[2] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. 1, Grundlehren Math. Wiss., 256, Distribution Theory and Fourier Analysis, Springer-Verlag, Heidelberg, 1983 | MR

[3] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Trigonometricheskie integraly”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 971–1003 | MR | Zbl

[4] I. A. Ikromov, “Summiruemost ostsillyatornykh integralov po parametram i problema ob ogranichenii preobrazovaniya Fure na krivykh”, Matem. zametki, 87:5 (2010), 734–755 | DOI | MR

[5] V. V. Lebedev, “O preobrazovanii Fure kharakteristicheskikh funktsii oblastei s $C^1$-gladkoi granitsei”, Funkts. analiz i ego pril., 47:1 (2013), 33–46 | DOI | MR | Zbl

[6] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR

[7] Hua Loo-keng, “On the number of solutions of Tarry's problem”, Acta Sci. Sinica, 1:1 (1952), 1–76 | MR

[8] L. Erdös, M. Salmhofer, “Decay of the Fourier transform of surfaces with vanishing curvature”, Math. Z., 257:2 (2007), 261–294 | DOI | MR

[9] M. Sugimoto, “Estimates for hyperbolic equations of space dimension 3”, J. Funct. Anal., 160:2 (1998), 382–407 | DOI | MR

[10] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, 1993 | MR

[11] D. I. Akramova, I. A. Ikromov, “Maksimalnye funktsii Rendola i summiruemost preobrazovaniya Fure mer”, Matem. zametki, 109:5 (2021), 643–663 | DOI | MR

[12] V. I. Arnold, A. N. Varchenko, S. M. Gusein-zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[13] I. A. Ikromov, D. Müller, Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra, Ann. of Math. Stud., 194, Princeton Univ. Press, Princeton, 2016 | MR

[14] A. N. Varchenko, “Mnogogranniki Nyutona i otsenki ostsilliruyuschikh integralov”, Funkts. analiz i ego pril., 10:3 (1976), 13–38 | MR | Zbl

[15] B. Randol, “On the Fourier transform of the indicator function of a planar set”, Trans. Amer. Math. Soc., 139 (1970), 271–278 | DOI | MR

[16] J. J. Duistermaat, “Oscillatory integrals, Lagrange immersions and unfolding of singularities”, Comm. Pure. Appl. Math., 27 (1974), 207–281 | DOI | MR

[17] D. A. Popov, “Zamechaniya o ravnomernykh sostavnykh otsenkakh ostsilliruyuschikh integralov s prostymi osobennostyami”, Izv. RAN. Ser. matem., 72:4 (2008), 173–196 | DOI | MR | Zbl

[18] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR

[19] A. Iosevich, E. Liflyand, Decay of the Fourier Transform. Analytic and Geometric Aspects, Birkhauser, Springer, Basel, 2014 | MR