Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_115_1_a0, author = {N. V. Baidakova and Yu. N. Subbotin}, title = {Approximation of the derivatives of a function defined on a simplex under {Lagrangian} interpolation}, journal = {Matemati\v{c}eskie zametki}, pages = {3--13}, publisher = {mathdoc}, volume = {115}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a0/} }
TY - JOUR AU - N. V. Baidakova AU - Yu. N. Subbotin TI - Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation JO - Matematičeskie zametki PY - 2024 SP - 3 EP - 13 VL - 115 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a0/ LA - ru ID - MZM_2024_115_1_a0 ER -
%0 Journal Article %A N. V. Baidakova %A Yu. N. Subbotin %T Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation %J Matematičeskie zametki %D 2024 %P 3-13 %V 115 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a0/ %G ru %F MZM_2024_115_1_a0
N. V. Baidakova; Yu. N. Subbotin. Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a0/
[1] R. A. Nicolaides, “On a class of finite elements generated by Lagrange interpolation”, SIAM J. Numer. Anal., 9:3 (1972), 435–445 | DOI | MR
[2] F. Syarle, Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[3] N. V. Baidakova, “Ob otsenkakh P. Zhame dlya konechnykh elementov s interpolyatsiei v ravnomernykh uzlakh simpleksa”, Matem. tr., 20:1 (2017), 43–74 | DOI | MR
[4] A. Khademi, S. Korotov, J. E. Vatne, “On the generalization of the Synge–Krizek maximum angle condition for $d$-simplices”, J. Comput. Appl. Math., 358:1 (2019), 29–33 | DOI | MR
[5] J. Brandts, S. Korotov, M. Křížek, Simplicial Partitions with Applications to the Finite Element Method, Springer Monogr. Math., Springer, Cham, 2020 | MR
[6] Yu. N. Subbotin, N. V. Baidakova, “Approksimatsiya proizvodnykh funktsii pri interpolyatsii Lagranzha na simpleksakh malykh razmernostei”, Funktsionalnye prostranstva, teoriya priblizhenii i smezhnye voprosy analiza, Sbornik statei. K 115-letiyu so dnya rozhdeniya akademika S. M. Nikolskogo, Trudy MIAN, 312, MIAN, M., 2021, 272–281 | DOI | MR
[7] Yu. N. Subbotin, “Zavisimost otsenok mnogomernoi kusochno polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Sbornik trudov Vsesoyuznoi shkoly po teorii funktsii (Dushanbe, 1986), Tr. MIAN SSSR, 189, Nauka, M., 1989, 117–137 | MR | Zbl
[8] P. Jamet, “Estimations d'erreur pour des éléments finis droits presque dégénérés”, Rev. Francaise Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 10:1 (1976), 43–60 | MR
[9] A. Hannukainen, S. Korotov, M. Křížek, “On Synge-type angle condition for $d$-simplices”, Appl. Math., 62:1 (2017), 1–13 | DOI | MR
[10] F. Eriksson, “The law of sines for tetrahedra and $n$-simplices”, Geometriae Dedicata, 7:1 (1978), 71–80 | DOI | MR
[11] J. L. Synge, The Hypercircle in Mathematical Physics: a Method for the Approximate Solution of Boundary Value Problems, Cambridge Univ. Press, New York, 1957 | MR
[12] M. Křížek, “On the maximum angle condition for linear tetrahedral elements”, SIAM J. Numer. Anal., 29:2 (1992), 513–520 | DOI | MR
[13] M. Berzhe, Geometriya, v. 1, Mir, M., 1984 | MR