Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

New upper bounds are found in the problem of approximation of $k$th derivatives of a function of $d$ variables defined on a simplex by the derivatives of an algebraic polynomial of degree at most $n$ ($0\leqslant k\leqslant n$) interpolating the values of the function at equidistant nodes of the simplex. The estimates are obtained in terms of the diameter of the simplex, the angular characteristic introduced in the paper, the dimension $d$, the degree $n$ of the polynomial, and the order $k$ of the derivative to be estimated and do not contain unknown parameters. These estimates are compared with those most frequently used in the literature.
Mots-clés : multidimensional interpolation, Lagrange interpolation polynomial on a simplex
Keywords: finite element method.
@article{MZM_2024_115_1_a0,
     author = {N. V. Baidakova and Yu. N. Subbotin},
     title = {Approximation of the derivatives of a function defined on a simplex under {Lagrangian} interpolation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a0/}
}
TY  - JOUR
AU  - N. V. Baidakova
AU  - Yu. N. Subbotin
TI  - Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation
JO  - Matematičeskie zametki
PY  - 2024
SP  - 3
EP  - 13
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a0/
LA  - ru
ID  - MZM_2024_115_1_a0
ER  - 
%0 Journal Article
%A N. V. Baidakova
%A Yu. N. Subbotin
%T Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation
%J Matematičeskie zametki
%D 2024
%P 3-13
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a0/
%G ru
%F MZM_2024_115_1_a0
N. V. Baidakova; Yu. N. Subbotin. Approximation of the derivatives of a function defined on a simplex under Lagrangian interpolation. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a0/

[1] R. A. Nicolaides, “On a class of finite elements generated by Lagrange interpolation”, SIAM J. Numer. Anal., 9:3 (1972), 435–445 | DOI | MR

[2] F. Syarle, Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[3] N. V. Baidakova, “Ob otsenkakh P. Zhame dlya konechnykh elementov s interpolyatsiei v ravnomernykh uzlakh simpleksa”, Matem. tr., 20:1 (2017), 43–74 | DOI | MR

[4] A. Khademi, S. Korotov, J. E. Vatne, “On the generalization of the Synge–Krizek maximum angle condition for $d$-simplices”, J. Comput. Appl. Math., 358:1 (2019), 29–33 | DOI | MR

[5] J. Brandts, S. Korotov, M. Křížek, Simplicial Partitions with Applications to the Finite Element Method, Springer Monogr. Math., Springer, Cham, 2020 | MR

[6] Yu. N. Subbotin, N. V. Baidakova, “Approksimatsiya proizvodnykh funktsii pri interpolyatsii Lagranzha na simpleksakh malykh razmernostei”, Funktsionalnye prostranstva, teoriya priblizhenii i smezhnye voprosy analiza, Sbornik statei. K 115-letiyu so dnya rozhdeniya akademika S. M. Nikolskogo, Trudy MIAN, 312, MIAN, M., 2021, 272–281 | DOI | MR

[7] Yu. N. Subbotin, “Zavisimost otsenok mnogomernoi kusochno polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Sbornik trudov Vsesoyuznoi shkoly po teorii funktsii (Dushanbe, 1986), Tr. MIAN SSSR, 189, Nauka, M., 1989, 117–137 | MR | Zbl

[8] P. Jamet, “Estimations d'erreur pour des éléments finis droits presque dégénérés”, Rev. Francaise Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 10:1 (1976), 43–60 | MR

[9] A. Hannukainen, S. Korotov, M. Křížek, “On Synge-type angle condition for $d$-simplices”, Appl. Math., 62:1 (2017), 1–13 | DOI | MR

[10] F. Eriksson, “The law of sines for tetrahedra and $n$-simplices”, Geometriae Dedicata, 7:1 (1978), 71–80 | DOI | MR

[11] J. L. Synge, The Hypercircle in Mathematical Physics: a Method for the Approximate Solution of Boundary Value Problems, Cambridge Univ. Press, New York, 1957 | MR

[12] M. Křížek, “On the maximum angle condition for linear tetrahedral elements”, SIAM J. Numer. Anal., 29:2 (1992), 513–520 | DOI | MR

[13] M. Berzhe, Geometriya, v. 1, Mir, M., 1984 | MR