Sets with Extremal Product Property and Its Variations
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 922-930
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we refine the lower bound for the size of the set $A$ of finite intervals of positive integers such that the size of the set $AA$ is asymptotically equal to $|A|^2/2$. Arguing by analogy with the previous work by Ford (2018) with minor optimizations, we refine the previous estimate. In this paper, we borrow the problems, approaches, and arguments of reasoning proposed by Ford.
Keywords:
product, set, divisor
Mots-clés : prime.
Mots-clés : prime.
@article{MZM_2023_114_6_a9,
author = {Yu. N. Shteinikov},
title = {Sets with {Extremal} {Product} {Property} and {Its} {Variations}},
journal = {Matemati\v{c}eskie zametki},
pages = {922--930},
publisher = {mathdoc},
volume = {114},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a9/}
}
Yu. N. Shteinikov. Sets with Extremal Product Property and Its Variations. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 922-930. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a9/