Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_6_a6, author = {G. V. Fedorov}, title = {Continued {Fractions} and the {Classification} {Problem} for {Elliptic} {Fields} {Over} {Quadratic} {Fields} of {Constants}}, journal = {Matemati\v{c}eskie zametki}, pages = {873--893}, publisher = {mathdoc}, volume = {114}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a6/} }
TY - JOUR AU - G. V. Fedorov TI - Continued Fractions and the Classification Problem for Elliptic Fields Over Quadratic Fields of Constants JO - Matematičeskie zametki PY - 2023 SP - 873 EP - 893 VL - 114 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a6/ LA - ru ID - MZM_2023_114_6_a6 ER -
G. V. Fedorov. Continued Fractions and the Classification Problem for Elliptic Fields Over Quadratic Fields of Constants. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 873-893. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a6/
[1] V. P. Platonov, “Teoretiko-chislovye svoistva giperellipticheskikh polei i problema krucheniya v yakobianakh giperellipticheskikh krivykh nad polem ratsionalnykh chisel”, UMN, 69:1 (415) (2014), 3–38 | DOI | MR | Zbl
[2] V. P. Platonov, G. V. Fedorov, “O probleme periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Matem. sb., 209:4 (2018), 54–94 | DOI | MR
[3] V. V. Benyash-Krivets, V. P. Platonov, “Gruppy $S$-edinits v giperellipticheskikh polyakh i nepreryvnye drobi”, Matem. sb., 200:11 (2009), 15–44 | DOI | MR | Zbl
[4] V. P. Platonov, M. M. Petrunin, “$S$-edinitsy i periodichnost v kvadratichnykh funktsionalnykh polyakh”, UMN, 71:5 (431) (2016), 181–182 | DOI | MR | Zbl
[5] V. P. Platonov, G. V. Fedorov, “O periodichnosti nepreryvnykh drobei v ellipticheskikh polyakh”, Dokl. AN, 475:2 (2017), 133–136 | DOI | MR
[6] W. W. Adams, M. J. Razar, “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc. (3), 41:3 (1980), 481–498 | DOI | MR
[7] A. J. van der Poorten, X. C. Tran, “Periodic continued fractions in elliptic function fields”, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., 2369, Springer, Berlin, Heidelberg, 2002, 390–404 | DOI | MR
[8] A. J. van der Poorten, “Periodic continued fractions and elliptic curves”, High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Inst. Commun., 41, Amer. Math. Soc., Providence, RI, 2004, 353–365 | MR
[9] U. Zannier, “Hyperelliptic continued fractions and generalized Jacobians”, Amer. J. Math., 141:1 (2019), 1–40 | DOI | MR
[10] A. N. W. Hone, “Continued fractions and Hankel determinants from hyperelliptic curves”, Comm. Pure Appl. Math., 74:11 (2021), 2310–2347 | DOI | MR
[11] T. G. Berry, “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math. (Basel), 55:3 (1990), 259–266 | DOI | MR
[12] W. M. Schmidt, “On continued fractions and Diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166 | DOI | MR
[13] V. P. Platonov, G. V. Fedorov, “O probleme klassifikatsii mnogochlenov $f$ s periodicheskim razlozheniem $\sqrt{f}$ v nepreryvnuyu drob v giperellipticheskikh polyakh”, Izv. RAN. Ser. matem., 85:5 (2021), 152–189 | DOI | MR
[14] M. M. Petrunin, “$S$-edinitsy i periodichnost kvadratnogo kornya v giperellipticheskikh polyakh”, Dokl. AN, 474:2 (2017), 155–158 | MR
[15] V. P. Platonov, G. V. Fedorov, “Kriterii periodichnosti nepreryvnykh drobei klyuchevykh elementov giperellipticheskikh polei”, Chebyshevskii sb., 20:1 (2019), 248–260 | DOI
[16] G. V. Fedorov, “O probleme opisaniya elementov ellipticheskikh polei s periodicheskim razlozheniem v nepreryvnuyu drob nad kvadratichnymi polyami konstant”, Dokl. RAN. Matem., inform., prots. upr., 505 (2022), 56–62 | DOI
[17] V. P. Platonov, V. S. Zhgun, M. M. Petrunin, Yu. N. Shteinikov, “O konechnosti giperellipticheskikh polei so spetsialnymi svoistvami i periodicheskim razlozheniem $\sqrt{f}$”, Dokl. AN, 483:6 (2018), 609–613 | DOI
[18] V. P. Platonov, M. M. Petrunin, Yu. N. Shteinikov, “O konechnosti chisla ellipticheskikh polei s zadannymi stepenyami $S$-edinits i periodicheskim razlozheniem $\sqrt{f}$”, Dokl. AN, 488:3 (2019), 237–242 | DOI | MR
[19] V. P. Platonov, M. M. Petrunin, “O konechnosti chisla periodicheskikh razlozhenii v nepreryvnuyu drob $\sqrt f$ dlya kubicheskikh mnogochlenov nad polyami algebraicheskikh chisel”, Dokl. RAN. Matem., inform., prots. upr., 495 (2020), 48–54 | DOI | Zbl
[20] V. P. Platonov, V. S. Zhgun, G. V. Fedorov, “O periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh nad kvadratichnym polem konstant”, DAN, 482:2 (2018), 137–141 | DOI
[21] B. Mazur, “Rational points on modular curves”, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer-Verlag, Berlin–New York, 1977, 107–148 | MR
[22] M. A. Kenku, F. Momose, “Torsion points on elliptic curves defined over quadratic fields”, Nagoya Math. J., 109 (1988), 125–149 | DOI | MR
[23] G. V. Fedorov, “Ob otsenkakh dlin periodov funktsionalnykh nepreryvnykh drobei nad algebraicheskimi chislovymi polyami”, Chebyshevckii sb., 25:2 (2023) (to appear)
[24] D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR
[25] Z. L. Scherr, Rational Polynomial Pell Equations, Thesis, The University of Michigan, 2013
[26] G. V. Fedorov, “O dline perioda funktsionalnoi nepreryvnoi drobi nad chislovym polem”, Dokl. RAN. Matem., inform., prots. upr., 495 (2020), 78–81 | DOI | Zbl
[27] A. Meurer et al., “SymPy: symbolic computing in Python”, PeerJ Computer Science, 3 (2017), e103 | DOI
[28] SymPy 1.11 Documentation, https://docs.sympy.org/latest/index.html