Modular Generalization of the Bourgain--Kontorovich Theorem
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 739-752

Voir la notice de l'article provenant de la source Math-Net.Ru

The set $\mathfrak{D}^N_\mathbf{A}$ of all irreducible denominators $\le N$ of positive rationals $1$ whose continued fraction expansions consist of elements of the set $\mathbf{A}=\{1,2,4\}$ is considered. We prove that, for any prime $Q\le N^{2/3}$, the set $\mathfrak{D}^N_{\mathbf{A}}$ contains almost all possible remainders on division by $Q$ and the remainder term in the corresponding asymptotic formula decays according to a power law.
Keywords: continued fraction, trigonometric sum
Mots-clés : Zaremba's conjecture, Hausdorff dimension.
@article{MZM_2023_114_5_a6,
     author = {I. D. Kan},
     title = {Modular {Generalization} of the {Bourgain--Kontorovich} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {739--752},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a6/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - Modular Generalization of the Bourgain--Kontorovich Theorem
JO  - Matematičeskie zametki
PY  - 2023
SP  - 739
EP  - 752
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a6/
LA  - ru
ID  - MZM_2023_114_5_a6
ER  - 
%0 Journal Article
%A I. D. Kan
%T Modular Generalization of the Bourgain--Kontorovich Theorem
%J Matematičeskie zametki
%D 2023
%P 739-752
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a6/
%G ru
%F MZM_2023_114_5_a6
I. D. Kan. Modular Generalization of the Bourgain--Kontorovich Theorem. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 739-752. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a6/