Modular Generalization of the Bourgain--Kontorovich Theorem
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 739-752
Voir la notice de l'article provenant de la source Math-Net.Ru
The set $\mathfrak{D}^N_\mathbf{A}$ of all irreducible denominators $\le N$ of positive rationals $1$ whose continued fraction expansions consist of elements of the set $\mathbf{A}=\{1,2,4\}$ is considered. We prove that, for any prime $Q\le N^{2/3}$, the set $\mathfrak{D}^N_{\mathbf{A}}$ contains almost all possible remainders on division by $Q$ and the remainder term in the corresponding asymptotic formula decays according to a power law.
Keywords:
continued fraction, trigonometric sum
Mots-clés : Zaremba's conjecture, Hausdorff dimension.
Mots-clés : Zaremba's conjecture, Hausdorff dimension.
@article{MZM_2023_114_5_a6,
author = {I. D. Kan},
title = {Modular {Generalization} of the {Bourgain--Kontorovich} {Theorem}},
journal = {Matemati\v{c}eskie zametki},
pages = {739--752},
publisher = {mathdoc},
volume = {114},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a6/}
}
I. D. Kan. Modular Generalization of the Bourgain--Kontorovich Theorem. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 739-752. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a6/