Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 669-678.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma=\{\sigma_{i} \mid i\in I\}$ be a partition of the set of all primes, and let $G$ be a finite group. The group $G$ is said to be $\sigma$-primary if $G$ is a $\sigma_{i}$-group for some $i\in I$ and $\sigma$-complete if $G$ has a Hall $\sigma_{i}$-subgroup for each $i\in I$. A subgroup $A$ of $G$ is (i) $\sigma$-subnormal in $G$ if it has a subgroup series $A=A_{0} \leq A_{1} \leq \dotsb \leq A_{n}=G$ such that either $A_{i-1} \trianglelefteq A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is ${\sigma}$-primary for each $i=1, \dots, n$; (ii) modular in $G$ if (1) $\langle X, A \cap Z \rangle=\langle X, A \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z$ and (2) $\langle A, Y \cap Z \rangle=\langle A, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $A \leq Z$; (iii) $\sigma$-quasinormal in $G$ if $A$ is $\sigma$-subnormal and modular in $G$. Finite solvable groups in which the $\sigma$-quasinormality of subgroups is a transitive relation are described. Some known results are generalized.
Keywords: finite group, $\sigma$-quasinormal subgroup, modular subgroup.
Mots-clés : solvable group, $M$-group
@article{MZM_2023_114_5_a2,
     author = {Ch. Wan and Guo Wen Bin and I. N. Safonova and A. N. Skiba},
     title = {Finite {Solvable} {Groups} in {Which} the $\sigma${-Quasinormality} of {Subgroups} is a {Transitive} {Relation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {669--678},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/}
}
TY  - JOUR
AU  - Ch. Wan
AU  - Guo Wen Bin
AU  - I. N. Safonova
AU  - A. N. Skiba
TI  - Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation
JO  - Matematičeskie zametki
PY  - 2023
SP  - 669
EP  - 678
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/
LA  - ru
ID  - MZM_2023_114_5_a2
ER  - 
%0 Journal Article
%A Ch. Wan
%A Guo Wen Bin
%A I. N. Safonova
%A A. N. Skiba
%T Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation
%J Matematičeskie zametki
%D 2023
%P 669-678
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/
%G ru
%F MZM_2023_114_5_a2
Ch. Wan; Guo Wen Bin; I. N. Safonova; A. N. Skiba. Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 669-678. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/

[1] A. N. Skiba, “A generalization of a Hall theorem”, J. Algebra Appl., 15:5 (2016), 1650085 | DOI | MR

[2] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR

[3] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436:8 (2015), 1–16 | DOI | MR

[4] O. Ore, “Contributions to the theory of groups of finite order”, Duke Math. J., 5:2 (1939), 431–460 | MR

[5] N. Ito, J. Szép, “Über die Quasinormalteiler von endlichen Gruppen.”, Acta Sci. Math. (Szeged), 23 (1962), 168–170 | MR

[6] R. Maier, P. Schmid, “The embedding of quasinormal subgroups in finite groups”, Math. Z., 131 (1973), 269–272 | DOI | MR

[7] J. G. Thompson, “An example of core-free quasinormal subgroups of $p$-groups”, Math. Z., 96 (1967), 226–227 | DOI | MR

[8] R. Schmidt, Subgroup Lattices of Groups, De Gruyter Exp. Math., 14, Walter de Gruyter, Berlin, 1994 | MR

[9] B. Hu, J. Huang, A. N. Skiba, “On $\sigma$-quasinormal subgroups of finite groups.”, Bull. Aust. Math. Soc., 99:3 (2019), 413–420 | DOI | MR

[10] G. Zacher, “I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 8 (37) (1964), 150–154 | MR

[11] W. Gaschütz, “Gruppen, in denen das Normalteilersein transitiv ist”, J. Reine Angew. Math., 198 (1957), 87–92 | DOI | MR

[12] A. Frigerio, “Gruppi finiti nei quali e transitivo l'essere sottogruppo modulare”, Ist. Veneto Sci. Lett. Arti Atti Cl. Sci. Mat. Natur., 132 (1973–1974), 185–190 | MR

[13] I. Zimmermann, “Submodular subgroups in finite groups”, Math. Z., 202:4 (1989), 545–557 | DOI | MR

[14] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, De Gruyter Exp. Math., 53, Walter de Gruyter, Berlin–New York, 2010 | MR

[15] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Math. Appl. (Springer), 584, Springer, Dordrecht, 2006 | MR

[16] K. Doerk, T. Hawkes, Finite Soluble Groups, De Gruyter Exp. Math., 4, Walter de Gruyter, Berlin–New York, 1992 | MR