Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 669-678

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma=\{\sigma_{i} \mid i\in I\}$ be a partition of the set of all primes, and let $G$ be a finite group. The group $G$ is said to be $\sigma$-primary if $G$ is a $\sigma_{i}$-group for some $i\in I$ and $\sigma$-complete if $G$ has a Hall $\sigma_{i}$-subgroup for each $i\in I$. A subgroup $A$ of $G$ is (i) $\sigma$-subnormal in $G$ if it has a subgroup series $A=A_{0} \leq A_{1} \leq \dotsb \leq A_{n}=G$ such that either $A_{i-1} \trianglelefteq A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is ${\sigma}$-primary for each $i=1, \dots, n$; (ii) modular in $G$ if (1) $\langle X, A \cap Z \rangle=\langle X, A \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z$ and (2) $\langle A, Y \cap Z \rangle=\langle A, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $A \leq Z$; (iii) $\sigma$-quasinormal in $G$ if $A$ is $\sigma$-subnormal and modular in $G$. Finite solvable groups in which the $\sigma$-quasinormality of subgroups is a transitive relation are described. Some known results are generalized.
Keywords: finite group, $\sigma$-quasinormal subgroup, modular subgroup.
Mots-clés : solvable group, $M$-group
@article{MZM_2023_114_5_a2,
     author = {Ch. Wan and Guo Wen Bin and I. N. Safonova and A. N. Skiba},
     title = {Finite {Solvable} {Groups} in {Which} the $\sigma${-Quasinormality} of {Subgroups} is a {Transitive} {Relation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {669--678},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/}
}
TY  - JOUR
AU  - Ch. Wan
AU  - Guo Wen Bin
AU  - I. N. Safonova
AU  - A. N. Skiba
TI  - Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation
JO  - Matematičeskie zametki
PY  - 2023
SP  - 669
EP  - 678
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/
LA  - ru
ID  - MZM_2023_114_5_a2
ER  - 
%0 Journal Article
%A Ch. Wan
%A Guo Wen Bin
%A I. N. Safonova
%A A. N. Skiba
%T Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation
%J Matematičeskie zametki
%D 2023
%P 669-678
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/
%G ru
%F MZM_2023_114_5_a2
Ch. Wan; Guo Wen Bin; I. N. Safonova; A. N. Skiba. Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 669-678. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/