Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_5_a2, author = {Ch. Wan and Guo Wen Bin and I. N. Safonova and A. N. Skiba}, title = {Finite {Solvable} {Groups} in {Which} the $\sigma${-Quasinormality} of {Subgroups} is a {Transitive} {Relation}}, journal = {Matemati\v{c}eskie zametki}, pages = {669--678}, publisher = {mathdoc}, volume = {114}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/} }
TY - JOUR AU - Ch. Wan AU - Guo Wen Bin AU - I. N. Safonova AU - A. N. Skiba TI - Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation JO - Matematičeskie zametki PY - 2023 SP - 669 EP - 678 VL - 114 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/ LA - ru ID - MZM_2023_114_5_a2 ER -
%0 Journal Article %A Ch. Wan %A Guo Wen Bin %A I. N. Safonova %A A. N. Skiba %T Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation %J Matematičeskie zametki %D 2023 %P 669-678 %V 114 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/ %G ru %F MZM_2023_114_5_a2
Ch. Wan; Guo Wen Bin; I. N. Safonova; A. N. Skiba. Finite Solvable Groups in Which the $\sigma$-Quasinormality of Subgroups is a Transitive Relation. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 669-678. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a2/
[1] A. N. Skiba, “A generalization of a Hall theorem”, J. Algebra Appl., 15:5 (2016), 1650085 | DOI | MR
[2] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR
[3] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436:8 (2015), 1–16 | DOI | MR
[4] O. Ore, “Contributions to the theory of groups of finite order”, Duke Math. J., 5:2 (1939), 431–460 | MR
[5] N. Ito, J. Szép, “Über die Quasinormalteiler von endlichen Gruppen.”, Acta Sci. Math. (Szeged), 23 (1962), 168–170 | MR
[6] R. Maier, P. Schmid, “The embedding of quasinormal subgroups in finite groups”, Math. Z., 131 (1973), 269–272 | DOI | MR
[7] J. G. Thompson, “An example of core-free quasinormal subgroups of $p$-groups”, Math. Z., 96 (1967), 226–227 | DOI | MR
[8] R. Schmidt, Subgroup Lattices of Groups, De Gruyter Exp. Math., 14, Walter de Gruyter, Berlin, 1994 | MR
[9] B. Hu, J. Huang, A. N. Skiba, “On $\sigma$-quasinormal subgroups of finite groups.”, Bull. Aust. Math. Soc., 99:3 (2019), 413–420 | DOI | MR
[10] G. Zacher, “I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 8 (37) (1964), 150–154 | MR
[11] W. Gaschütz, “Gruppen, in denen das Normalteilersein transitiv ist”, J. Reine Angew. Math., 198 (1957), 87–92 | DOI | MR
[12] A. Frigerio, “Gruppi finiti nei quali e transitivo l'essere sottogruppo modulare”, Ist. Veneto Sci. Lett. Arti Atti Cl. Sci. Mat. Natur., 132 (1973–1974), 185–190 | MR
[13] I. Zimmermann, “Submodular subgroups in finite groups”, Math. Z., 202:4 (1989), 545–557 | DOI | MR
[14] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, De Gruyter Exp. Math., 53, Walter de Gruyter, Berlin–New York, 2010 | MR
[15] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Math. Appl. (Springer), 584, Springer, Dordrecht, 2006 | MR
[16] K. Doerk, T. Hawkes, Finite Soluble Groups, De Gruyter Exp. Math., 4, Walter de Gruyter, Berlin–New York, 1992 | MR