On the Existence of an Element with Given Deviations from an Expanding System of Subspaces
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 780-788.

Voir la notice de l'article provenant de la source Math-Net.Ru

We expand the class of deviation sequences for which the problem on the existence of an element of a Banach space with these deviations from a system of nested subspaces is solved positively regardless of the space and the system of subspaces. This result is used to narrow the gap between the weak asymptotics constants in S. V. Konyagin's theorem on the existence of an element whose deviations are asymptotically close to given ones.
Keywords: Banach space, subspace, deviations, Bernstein problem.
@article{MZM_2023_114_5_a10,
     author = {Yu. A. Skvortsov},
     title = {On the {Existence} of an {Element} with {Given} {Deviations} from an {Expanding} {System} of {Subspaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {780--788},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a10/}
}
TY  - JOUR
AU  - Yu. A. Skvortsov
TI  - On the Existence of an Element with Given Deviations from an Expanding System of Subspaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 780
EP  - 788
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a10/
LA  - ru
ID  - MZM_2023_114_5_a10
ER  - 
%0 Journal Article
%A Yu. A. Skvortsov
%T On the Existence of an Element with Given Deviations from an Expanding System of Subspaces
%J Matematičeskie zametki
%D 2023
%P 780-788
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a10/
%G ru
%F MZM_2023_114_5_a10
Yu. A. Skvortsov. On the Existence of an Element with Given Deviations from an Expanding System of Subspaces. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 780-788. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a10/

[1] S. N. Bernshtein, “Ob obratnoi zadache teorii nailuchshego priblizheniya nepreryvnykh funktsii”, Sobranie sochinenii. Tom 2, Izd-vo AN SSSR, M., 1954, 292–294 | MR

[2] A. F. Timan, Teoriya priblizhenii funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960 | MR

[3] V. N. Nikolskii, “O nekotorykh svoistvakh refleksivnykh prostranstv”, Uch. zap. Kalin. gos. ped. in-ta, 29 (1963), 121–125 | MR

[4] I. S. Tyuremskikh, “$(B)$-svoistvo gilbertovykh prostranstv”, Uch. zap. Kalin. gos. ped. in-ta, 39 (1964), 53–64 | MR

[5] H. S. Shapiro, “Some negative theorems of approximation theory”, Michigan Math. J., 11:3 (1964), 211–217 | DOI | MR

[6] I. S. Tyuremskikh, “Ob odnoi zadache S. N. Bernshteina”, Uch. zap. Kalin. gos. ped. in-ta, 52 (1967), 123–129 | MR

[7] P. A. Borodin, “K zadache suschestvovaniya elementa s zadannymi ukloneniyami ot rasshiryayuscheisya sistemy podprostranstv”, Matem. zametki, 80:5 (2006), 657–667 | DOI | MR | Zbl

[8] S. V. Konyagin, “Ob uklonenii elementov banakhova prostranstva ot sistemy podprostranstv”, Funktsionalnye prostranstva i smezhnye voprosy analiza, Tr. MIAN, 284, Nauka, M., 2014, 212–215 | DOI