On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 643-658.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the three-particle Schrödinger operator $H_{\mu,\lambda,\gamma} (\mathbf K)$, $\mathbf K\in \mathbb{T}^3$, associated with a system of three particles (of which two are bosons with mass $1$ and one is arbitrary with mass $m=1/\gamma1$) coupled by pairwise contact potentials $\mu>0$ and $\lambda>0$ on the three-dimensional lattice $\mathbb{Z}^3$. We prove that there exist critical mass ratio values $\gamma=\gamma_{1}$ and $\gamma=\gamma_{2}$ such that for sufficiently large $\mu>0$ and fixed $\lambda>0$ the operator $H_{\mu,\lambda,\gamma}(\mathbf{0})$, $\mathbf{0}=(0,0,0)$, has at least one eigenvalue lying to the left of the essential spectrum for $\gamma\in (0,\gamma_{1})$, at least two such eigenvalues for $\gamma\in (\gamma_{1},\gamma_{2})$, and at least four such eigenvalues for $\gamma\in (\gamma_{2}, +\infty)$.
Keywords: Schrödinger operator, lattice, Hamiltonian, zero-range potential, eigenvalue, total quasimomentum, invariant subspace, Faddeev operator.
Mots-clés : boson
@article{MZM_2023_114_5_a0,
     author = {Zh. I. Abdullaev and J. Kh. Boymurodov and A. M. Khalkhuzhaev},
     title = {On the {Existence} of {Eigenvalues} of the {Three-Particle} {Discrete} {Schr\"{o}dinger} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--658},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
AU  - J. Kh. Boymurodov
AU  - A. M. Khalkhuzhaev
TI  - On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator
JO  - Matematičeskie zametki
PY  - 2023
SP  - 643
EP  - 658
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/
LA  - ru
ID  - MZM_2023_114_5_a0
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%A J. Kh. Boymurodov
%A A. M. Khalkhuzhaev
%T On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator
%J Matematičeskie zametki
%D 2023
%P 643-658
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/
%G ru
%F MZM_2023_114_5_a0
Zh. I. Abdullaev; J. Kh. Boymurodov; A. M. Khalkhuzhaev. On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/

[1] D. C. Mattis, “The few-body problem on a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[2] A. I. Mogilner, “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-particle Hamiltonians: Spectra and Scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR

[3] V. A. Malishev, R. A. Minlos, Linear Infinite-Particle Operators, Transl. Math. Monogr., 143, Amer. Math. Soc., Providence, RI, 1995 | MR

[4] R. A. Minlos, A. I. Mogilner, “Some problems concerning spectra of lattice models”, Schrödinger operators, standard and nonstandard (Dubna, 1988), World Scientific, Teaneck, NJ, 1989, 243–257 | MR

[5] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. IV, Analysis of Operators, Academic Press, New York–London, 1979 | MR

[6] S. N. Lakaev, M. E. Muminov, “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shredingera na reshetke”, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl

[7] V. Efimov, “Energy levels arising from resonant two-body forces in a three-body system”, Phys. Lett. B, 33 (1970), 563–564 | DOI

[8] S. Albeverio, R. Hoegh-Krohn, T. T. Wu, “A class of exactly solvable three-body quantum mechanical problems and the universal low energy behavior”, Phys. Lett. A, 83:3 (1971), 105–109 | DOI | MR

[9] R. D. Amado, J. V. Noble, “Efimov's effect. A new pathology of three-particle systems”, Phys. Lett. B, 35:1 (1971), 25–27 | DOI

[10] L. D. Faddeev, S. P. Merkuriev, Quantum scattering theory for several particle systems, Math. Phys. Appl. Math., 11, Kluwer Acad. Publ., 1993 | MR

[11] D. R. Yafaev, “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94 (136):4 (8) (1974), 567–593 | MR | Zbl

[12] Y. N. Ovchinnikov, I. M. Sigal, “Number of bound states of three-body systems and Efimov's effect”, Ann. Physics, 123:2 (1989), 274–295 | DOI | MR

[13] A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics”, Comm. Math. Phys., 156:1 (1993), 101–126 | DOI | MR

[14] H. Tamura, “Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect”, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, 1994, 311–322 | DOI | MR

[15] S. N. Lakaev, A. R. Khalmukhamedov, A. M. Khalkhuzhaev, “O svyazannykh sostoyaniyakh operatora Shredingera sistemy trekh bozonov na reshetke”, TMF, 188:1 (2016), 36–48 | DOI | MR

[16] S. N. Lakaev, Zh. I. Abdullaev, “Spektr raznostnogo trekhchastichnogo operatora Shredingera na reshetke”, Matem. zametki, 71:5 (2002), 686–696 | DOI | MR | Zbl

[17] R. A. Minlos, “Sistema trekh kvantovykh chastits, vzaimodeistvuyuschikh potochechno”, UMN, 69:3 (417) (2014), 145–172 | DOI | MR | Zbl

[18] S. N. Lakaev, G. F. Dell'Antonio, A. M. Khalkhuzhaev, “Existence of an isolated band in a system of three particles in an optical lattice”, J. Phys. A, 49:14 (2016), 145204 | DOI | MR

[19] S. N. Lakaev, Sh. S. Lakaev, “The existence of bound states in a system of three particles in an optical lattice”, J. Phys. A, 50:33 (2017), 335202 | DOI | MR

[20] J. I. Abbullaev, A. M. Khalkhuzhaev, K. D. Kuliev, “The existence of eigenvalues of Schrodinger operator on three dimensional lattice”, Methods Funct. Anal. Topology, 28:3 (2022), 189–208 | MR

[21] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR

[22] I. J. Zucker, “70+ years of the Watson integrals”, J. Stat. Phys., 145:3 (2011), 591–612 | DOI | MR

[23] A. A. Pankov, Lecture Notes on Schrödinger Equations, Nova Sci. Publ., New York, 2007 | MR