Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_5_a0, author = {Zh. I. Abdullaev and J. Kh. Boymurodov and A. M. Khalkhuzhaev}, title = {On the {Existence} of {Eigenvalues} of the {Three-Particle} {Discrete} {Schr\"{o}dinger} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {643--658}, publisher = {mathdoc}, volume = {114}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/} }
TY - JOUR AU - Zh. I. Abdullaev AU - J. Kh. Boymurodov AU - A. M. Khalkhuzhaev TI - On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator JO - Matematičeskie zametki PY - 2023 SP - 643 EP - 658 VL - 114 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/ LA - ru ID - MZM_2023_114_5_a0 ER -
%0 Journal Article %A Zh. I. Abdullaev %A J. Kh. Boymurodov %A A. M. Khalkhuzhaev %T On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator %J Matematičeskie zametki %D 2023 %P 643-658 %V 114 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/ %G ru %F MZM_2023_114_5_a0
Zh. I. Abdullaev; J. Kh. Boymurodov; A. M. Khalkhuzhaev. On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/
[1] D. C. Mattis, “The few-body problem on a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR
[2] A. I. Mogilner, “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-particle Hamiltonians: Spectra and Scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR
[3] V. A. Malishev, R. A. Minlos, Linear Infinite-Particle Operators, Transl. Math. Monogr., 143, Amer. Math. Soc., Providence, RI, 1995 | MR
[4] R. A. Minlos, A. I. Mogilner, “Some problems concerning spectra of lattice models”, Schrödinger operators, standard and nonstandard (Dubna, 1988), World Scientific, Teaneck, NJ, 1989, 243–257 | MR
[5] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. IV, Analysis of Operators, Academic Press, New York–London, 1979 | MR
[6] S. N. Lakaev, M. E. Muminov, “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shredingera na reshetke”, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl
[7] V. Efimov, “Energy levels arising from resonant two-body forces in a three-body system”, Phys. Lett. B, 33 (1970), 563–564 | DOI
[8] S. Albeverio, R. Hoegh-Krohn, T. T. Wu, “A class of exactly solvable three-body quantum mechanical problems and the universal low energy behavior”, Phys. Lett. A, 83:3 (1971), 105–109 | DOI | MR
[9] R. D. Amado, J. V. Noble, “Efimov's effect. A new pathology of three-particle systems”, Phys. Lett. B, 35:1 (1971), 25–27 | DOI
[10] L. D. Faddeev, S. P. Merkuriev, Quantum scattering theory for several particle systems, Math. Phys. Appl. Math., 11, Kluwer Acad. Publ., 1993 | MR
[11] D. R. Yafaev, “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94 (136):4 (8) (1974), 567–593 | MR | Zbl
[12] Y. N. Ovchinnikov, I. M. Sigal, “Number of bound states of three-body systems and Efimov's effect”, Ann. Physics, 123:2 (1989), 274–295 | DOI | MR
[13] A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics”, Comm. Math. Phys., 156:1 (1993), 101–126 | DOI | MR
[14] H. Tamura, “Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect”, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, 1994, 311–322 | DOI | MR
[15] S. N. Lakaev, A. R. Khalmukhamedov, A. M. Khalkhuzhaev, “O svyazannykh sostoyaniyakh operatora Shredingera sistemy trekh bozonov na reshetke”, TMF, 188:1 (2016), 36–48 | DOI | MR
[16] S. N. Lakaev, Zh. I. Abdullaev, “Spektr raznostnogo trekhchastichnogo operatora Shredingera na reshetke”, Matem. zametki, 71:5 (2002), 686–696 | DOI | MR | Zbl
[17] R. A. Minlos, “Sistema trekh kvantovykh chastits, vzaimodeistvuyuschikh potochechno”, UMN, 69:3 (417) (2014), 145–172 | DOI | MR | Zbl
[18] S. N. Lakaev, G. F. Dell'Antonio, A. M. Khalkhuzhaev, “Existence of an isolated band in a system of three particles in an optical lattice”, J. Phys. A, 49:14 (2016), 145204 | DOI | MR
[19] S. N. Lakaev, Sh. S. Lakaev, “The existence of bound states in a system of three particles in an optical lattice”, J. Phys. A, 50:33 (2017), 335202 | DOI | MR
[20] J. I. Abbullaev, A. M. Khalkhuzhaev, K. D. Kuliev, “The existence of eigenvalues of Schrodinger operator on three dimensional lattice”, Methods Funct. Anal. Topology, 28:3 (2022), 189–208 | MR
[21] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR
[22] I. J. Zucker, “70+ years of the Watson integrals”, J. Stat. Phys., 145:3 (2011), 591–612 | DOI | MR
[23] A. A. Pankov, Lecture Notes on Schrödinger Equations, Nova Sci. Publ., New York, 2007 | MR