On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 643-658

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the three-particle Schrödinger operator $H_{\mu,\lambda,\gamma} (\mathbf K)$, $\mathbf K\in \mathbb{T}^3$, associated with a system of three particles (of which two are bosons with mass $1$ and one is arbitrary with mass $m=1/\gamma1$) coupled by pairwise contact potentials $\mu>0$ and $\lambda>0$ on the three-dimensional lattice $\mathbb{Z}^3$. We prove that there exist critical mass ratio values $\gamma=\gamma_{1}$ and $\gamma=\gamma_{2}$ such that for sufficiently large $\mu>0$ and fixed $\lambda>0$ the operator $H_{\mu,\lambda,\gamma}(\mathbf{0})$, $\mathbf{0}=(0,0,0)$, has at least one eigenvalue lying to the left of the essential spectrum for $\gamma\in (0,\gamma_{1})$, at least two such eigenvalues for $\gamma\in (\gamma_{1},\gamma_{2})$, and at least four such eigenvalues for $\gamma\in (\gamma_{2}, +\infty)$.
Keywords: Schrödinger operator, lattice, Hamiltonian, zero-range potential, eigenvalue, total quasimomentum, invariant subspace, Faddeev operator.
Mots-clés : boson
@article{MZM_2023_114_5_a0,
     author = {Zh. I. Abdullaev and J. Kh. Boymurodov and A. M. Khalkhuzhaev},
     title = {On the {Existence} of {Eigenvalues} of the {Three-Particle} {Discrete} {Schr\"{o}dinger} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--658},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
AU  - J. Kh. Boymurodov
AU  - A. M. Khalkhuzhaev
TI  - On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator
JO  - Matematičeskie zametki
PY  - 2023
SP  - 643
EP  - 658
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/
LA  - ru
ID  - MZM_2023_114_5_a0
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%A J. Kh. Boymurodov
%A A. M. Khalkhuzhaev
%T On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator
%J Matematičeskie zametki
%D 2023
%P 643-658
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/
%G ru
%F MZM_2023_114_5_a0
Zh. I. Abdullaev; J. Kh. Boymurodov; A. M. Khalkhuzhaev. On the Existence of Eigenvalues of the Three-Particle Discrete Schr\"{o}dinger Operator. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a0/