Existence of Bargaining Sets for Cooperative Games with Fuzzy Payoffs
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 615-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the bargaining set for a cooperative game with trapezoidal fuzzy payoffs is nonempty.
Keywords: cooperative game, fuzzy number, bargaining set, objection, counter-objection.
@article{MZM_2023_114_4_a9,
     author = {A. S. Shvedov},
     title = {Existence of {Bargaining} {Sets} for {Cooperative} {Games} with {Fuzzy} {Payoffs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {615--622},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a9/}
}
TY  - JOUR
AU  - A. S. Shvedov
TI  - Existence of Bargaining Sets for Cooperative Games with Fuzzy Payoffs
JO  - Matematičeskie zametki
PY  - 2023
SP  - 615
EP  - 622
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a9/
LA  - ru
ID  - MZM_2023_114_4_a9
ER  - 
%0 Journal Article
%A A. S. Shvedov
%T Existence of Bargaining Sets for Cooperative Games with Fuzzy Payoffs
%J Matematičeskie zametki
%D 2023
%P 615-622
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a9/
%G ru
%F MZM_2023_114_4_a9
A. S. Shvedov. Existence of Bargaining Sets for Cooperative Games with Fuzzy Payoffs. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 615-622. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a9/

[1] R. J. Aumann, M. Maschler, “The bargaining set for cooperative games”, Advances in Game Theory, eds. M. Dresher, L. S. Shapley, A. W. Tucker, Princeton Univ. Press, Princeton, 1964, 443–476 | MR

[2] M. Davis, M. Maschler, “Existence of stable payoff configurations for cooperative games”, Bull. Amer. Math. Soc., 69 (1963), 106–108 | DOI | MR

[3] B. Peleg, “Existence theorem for the bargaining set $\mathscr M_1^{(i)}$”, Bull. Amer. Math. Soc., 69 (1963), 109–110 | DOI | MR

[4] B. Peleg, “Existence theorem for the bargaining set $\mathscr M_1^{(i)}$”, Essays in Mathematical Economics (In Honor of Oskar Morgenstern), ed. M. Shubik, Princeton Univ. Press, Princeton, 1967, 53–56 | MR

[5] M. J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, Cambridge, MA, 1994 | MR

[6] B. Peleg, P. Sudhölter, Introduction to the Theory of Cooperative Games, Springer-Verlag, Heidelberg, 2007 | MR

[7] K.-I. Shimomura, “The bargaining set and coalition formation”, Int. J. Econ. Theory, 18:1 (2022), 16–37 | DOI | MR

[8] J. Liu, X. Liu, Y. Huang, W. Yang, “Existence of an Aumann–Maschler fuzzy bargaining set and fuzzy kernels in TU fuzzy games”, Fuzzy Sets and Systems, 349 (2018), 53–63 | DOI | MR

[9] Y. Huang, D. Bi, J. Liu, X. Liu, M. Wang, “Existence of fuzzy prekernels and Mas-Colell bargaining sets in TU games”, Fuzzy Sets and Systems, 362 (2019), 71–84 | DOI | MR

[10] X. Yu, H. Zhou, X. Zhang, Q. Zhang, Y. Liu, J. Pang, “The fuzzy bargaining set of a cooperative game with fuzzy coalition”, J. of Intelligent and Fuzzy Systems, 33 (2017), 1757–1765 | DOI

[11] X. Zhang, H. Sun, G. Xu, D. Hou, “On the core, nucleolus and bargaining sets of cooperative games with fuzzy payoffs”, J. of Intelligent and Fuzzy Systems, 36 (2019), 6129–6142 | DOI

[12] G. Bortolan, R. Degani, “A review of some methods for ranking fuzzy subsets”, Fuzzy Sets and Systems, 15:1 (1985), 1–19 | DOI | MR