Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_4_a6, author = {A. E. Mironov and A. Senninger and I. A. Taimanov}, title = {Orthogonal {Curvilinear} {Coordinate} {Systems} and {Torsion-Free} {Sheaves} over {Reducible} {Spectral} {Curves}}, journal = {Matemati\v{c}eskie zametki}, pages = {579--590}, publisher = {mathdoc}, volume = {114}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/} }
TY - JOUR AU - A. E. Mironov AU - A. Senninger AU - I. A. Taimanov TI - Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves JO - Matematičeskie zametki PY - 2023 SP - 579 EP - 590 VL - 114 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/ LA - ru ID - MZM_2023_114_4_a6 ER -
%0 Journal Article %A A. E. Mironov %A A. Senninger %A I. A. Taimanov %T Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves %J Matematičeskie zametki %D 2023 %P 579-590 %V 114 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/ %G ru %F MZM_2023_114_4_a6
A. E. Mironov; A. Senninger; I. A. Taimanov. Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 579-590. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/