Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 579-590.

Voir la notice de l'article provenant de la source Math-Net.Ru

The methods of finite-gap integration are used to construct orthogonal curvilinear coordinate systems in the Euclidean space corresponding to sheaves of rank one without torsion over reducible singular spectral curves.
Keywords: orthogonal curvilinear coordinates, finite-gap integration, spectral curve, torsion-free sheaf.
@article{MZM_2023_114_4_a6,
     author = {A. E. Mironov and A. Senninger and I. A. Taimanov},
     title = {Orthogonal {Curvilinear} {Coordinate} {Systems} and {Torsion-Free} {Sheaves} over {Reducible} {Spectral} {Curves}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {579--590},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/}
}
TY  - JOUR
AU  - A. E. Mironov
AU  - A. Senninger
AU  - I. A. Taimanov
TI  - Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves
JO  - Matematičeskie zametki
PY  - 2023
SP  - 579
EP  - 590
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/
LA  - ru
ID  - MZM_2023_114_4_a6
ER  - 
%0 Journal Article
%A A. E. Mironov
%A A. Senninger
%A I. A. Taimanov
%T Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves
%J Matematičeskie zametki
%D 2023
%P 579-590
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/
%G ru
%F MZM_2023_114_4_a6
A. E. Mironov; A. Senninger; I. A. Taimanov. Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 579-590. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/

[1] V. E. Zakharov, “Zakharov, Vladimir E.(RS-AOS-L) Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I. Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR

[2] I. M. Krichever, “Algebro-geometricheskie n-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego pril., 31:1 (1997), 32–50 | DOI | MR | Zbl

[3] A. E. Mironov, I. A. Taimanov, “Ortogonalnye krivolineinye sistemy koordinat, otvechayuschie singulyarnym spektralnym krivym”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Trudy MIAN, 255, Nauka, M., 2006, 180–196 | MR

[4] A. E. Mironov, I. A. Taimanov, “O nekotorykh algebraicheskikh primerakh frobeniusovykh mnogoobrazii”, TMF, 151:2 (2007), 195–206 | DOI | MR | Zbl

[5] I. A. Taimanov, “Singulyarnye spektralnye krivye v konechnozonnom integrirovanii”, UMN, 66:1 (397) (2011), 111–150 | DOI | MR | Zbl

[6] Zh.-P. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968 | MR

[7] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lect. Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 120–348 | MR

[8] Zh.-G. Darbu, Lektsii po obschei teorii poverkhnostei, v. 2, IKI, Izhevsk, 2013

[9] A. A. Akhmetshin, Yu. S. Volvovskii, I. M. Krichever, “Diskretnye analogi metrik Darbu–Egorova”, Solitony, geometriya, topologiya – na perekrestkakh, Trudy MIAN, 225, Nauka, M., 1999, 21–45 | MR | Zbl

[10] A. I. Bobenko, W. K. Schief, Yu. B. Suris, J. Techter, “On a discretization of confocal quadrics. I. An integrable systems approach”, J. Integrable Syst., 1:1 (2016), 34 | DOI