Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 579-590

Voir la notice de l'article provenant de la source Math-Net.Ru

The methods of finite-gap integration are used to construct orthogonal curvilinear coordinate systems in the Euclidean space corresponding to sheaves of rank one without torsion over reducible singular spectral curves.
Keywords: orthogonal curvilinear coordinates, finite-gap integration, spectral curve, torsion-free sheaf.
@article{MZM_2023_114_4_a6,
     author = {A. E. Mironov and A. Senninger and I. A. Taimanov},
     title = {Orthogonal {Curvilinear} {Coordinate} {Systems} and {Torsion-Free} {Sheaves} over {Reducible} {Spectral} {Curves}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {579--590},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/}
}
TY  - JOUR
AU  - A. E. Mironov
AU  - A. Senninger
AU  - I. A. Taimanov
TI  - Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves
JO  - Matematičeskie zametki
PY  - 2023
SP  - 579
EP  - 590
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/
LA  - ru
ID  - MZM_2023_114_4_a6
ER  - 
%0 Journal Article
%A A. E. Mironov
%A A. Senninger
%A I. A. Taimanov
%T Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves
%J Matematičeskie zametki
%D 2023
%P 579-590
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/
%G ru
%F MZM_2023_114_4_a6
A. E. Mironov; A. Senninger; I. A. Taimanov. Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 579-590. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/