Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_4_a6, author = {A. E. Mironov and A. Senninger and I. A. Taimanov}, title = {Orthogonal {Curvilinear} {Coordinate} {Systems} and {Torsion-Free} {Sheaves} over {Reducible} {Spectral} {Curves}}, journal = {Matemati\v{c}eskie zametki}, pages = {579--590}, publisher = {mathdoc}, volume = {114}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/} }
TY - JOUR AU - A. E. Mironov AU - A. Senninger AU - I. A. Taimanov TI - Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves JO - Matematičeskie zametki PY - 2023 SP - 579 EP - 590 VL - 114 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/ LA - ru ID - MZM_2023_114_4_a6 ER -
%0 Journal Article %A A. E. Mironov %A A. Senninger %A I. A. Taimanov %T Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves %J Matematičeskie zametki %D 2023 %P 579-590 %V 114 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/ %G ru %F MZM_2023_114_4_a6
A. E. Mironov; A. Senninger; I. A. Taimanov. Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 579-590. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a6/
[1] V. E. Zakharov, “Zakharov, Vladimir E.(RS-AOS-L) Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I. Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR
[2] I. M. Krichever, “Algebro-geometricheskie n-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego pril., 31:1 (1997), 32–50 | DOI | MR | Zbl
[3] A. E. Mironov, I. A. Taimanov, “Ortogonalnye krivolineinye sistemy koordinat, otvechayuschie singulyarnym spektralnym krivym”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Trudy MIAN, 255, Nauka, M., 2006, 180–196 | MR
[4] A. E. Mironov, I. A. Taimanov, “O nekotorykh algebraicheskikh primerakh frobeniusovykh mnogoobrazii”, TMF, 151:2 (2007), 195–206 | DOI | MR | Zbl
[5] I. A. Taimanov, “Singulyarnye spektralnye krivye v konechnozonnom integrirovanii”, UMN, 66:1 (397) (2011), 111–150 | DOI | MR | Zbl
[6] Zh.-P. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968 | MR
[7] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lect. Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 120–348 | MR
[8] Zh.-G. Darbu, Lektsii po obschei teorii poverkhnostei, v. 2, IKI, Izhevsk, 2013
[9] A. A. Akhmetshin, Yu. S. Volvovskii, I. M. Krichever, “Diskretnye analogi metrik Darbu–Egorova”, Solitony, geometriya, topologiya – na perekrestkakh, Trudy MIAN, 225, Nauka, M., 1999, 21–45 | MR | Zbl
[10] A. I. Bobenko, W. K. Schief, Yu. B. Suris, J. Techter, “On a discretization of confocal quadrics. I. An integrable systems approach”, J. Integrable Syst., 1:1 (2016), 34 | DOI