Domain of Existence of the Sum of a Series of Exponential Monomials
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 563-578.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, series of exponential monomials are considered. We study the problem of the distribution of singular points of the sum of a series on the boundary of its domain of convergence. We study the conditions under which, for any sequence of coefficients of the series with a chosen domain of convergence, the domain of existence of the sum of this series coincides with the given domain of convergence. We consider sequences of exponents having an angular density (measurable) and the zero condensation index. Various criteria related to the distribution of singular points of the sum of a series of exponential monomials on the boundary of its convergence domain are obtained. In particular, in the class of the indicated sequences, a criterion is obtained that all boundary points of a chosen convex domain are special for any sum of a series with a given domain of convergence. The criteria are formulated using simple geometric characteristics of the sequence of exponents and a convex domain (the angular density and the length of the boundary arc). It is also shown that the condition that the condensation index is equal to zero is essential.
Keywords: series, exponential monomial, singular point, angular density.
Mots-clés : domain of convergence, condensation index
@article{MZM_2023_114_4_a5,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Domain of {Existence} of the {Sum} of a {Series} of {Exponential} {Monomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {563--578},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a5/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Domain of Existence of the Sum of a Series of Exponential Monomials
JO  - Matematičeskie zametki
PY  - 2023
SP  - 563
EP  - 578
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a5/
LA  - ru
ID  - MZM_2023_114_4_a5
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Domain of Existence of the Sum of a Series of Exponential Monomials
%J Matematičeskie zametki
%D 2023
%P 563-578
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a5/
%G ru
%F MZM_2023_114_4_a5
A. S. Krivosheev; O. A. Krivosheeva. Domain of Existence of the Sum of a Series of Exponential Monomials. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 563-578. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a5/

[1] A. S. Krivosheev, O. A. Krivosheeva, “Raspredelenie osobykh tochek summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Matem. sb., 211:1 (2020), 60–124 | DOI | MR

[2] J. Hadamard, “Essai sur l'etude des fonctions données par leur développement de Taylor”, J. Math. Pures Appl. (4), 4 (8) (1892), 101–106

[3] E. Fabry, “Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux”, Ann. Sci. École Norm. Sup. (3), 13 (1896), 367–399 | DOI | MR

[4] G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Z., 29:1 (1929), 549–640 | DOI | MR

[5] W. H. G. Fuchs, “On the growth of functions of mean type”, Proc. Edinburgh Math. Soc. (2), 9 (1954), 53–70 | DOI | MR

[6] P. Malliavin, “Sur la croissance radiale d'une fonction méromorphe”, Illinois J. Math., 1:2 (1952), 259–296 | MR

[7] G. Pólya, “Über die Existenz unendlich vieler singulárer Punkte auf der Konvergenzgeraden gewisser Dirichletscher Reihen”, Königlich Preub. Akad. Wiss., 1923, 45–50

[8] G. Pólya, “Eine Verallgemeinerung des Fabryschen Lückensatzes”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 2 (1927), 187–195

[9] A. F. Leontev, Ryady eksponent, Nauka, M., 1976

[10] V. Bernstein, Lecçons sur les progrés récents de la théorie des séries de Dirichlet, Gauthier-Villars, Paris, 1933

[11] O. A. Krivosheeva, A. S. Krivosheev, “Osobye tochki summy ryada Dirikhle na pryamoi skhodimosti”, Funkts. analiz i ego pril., 49:2 (2015), 54–69 | DOI | MR | Zbl

[12] A. S. Krivosheev, “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. matem., 68:2 (2004), 71–136 | DOI | MR | Zbl

[13] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[14] O. A. Krivosheeva, “Osobye tochki summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz, 23:2 (2011), 162–205 | MR | Zbl

[15] O. A. Krivosheeva, A. S. Krivosheev, “Singular points for the sum of a series of exponential monomials”, Issues Anal., 7 (25):2 (2018), 72–87 | DOI

[16] A. S. Krivosheev, O. A. Krivosheeva, “Representation of analytic functions by series of exponential monomials in convex domains and its applications”, Lobachevskii J. Math., 40:9 (2019), 1330–1354 | DOI | MR

[17] G. L. Lunts, “O ryadakh tipa Teilora–Dirikhle”, Izv. AN Armyanskoi SSR, 14:2 (1961), 7–16 | MR

[18] O. A. Krivosheeva, “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufimsk. matem. zhurn., 3:2 (2011), 43–56 | Zbl

[19] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR

[20] A. S. Krivosheev, O. A. Krivosheeva, “Bazis v invariantnom podprostranstve tselykh funktsii”, Algebra i analiz, 27:2 (2015), 132–195 | MR