Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_4_a5, author = {A. S. Krivosheev and O. A. Krivosheeva}, title = {Domain of {Existence} of the {Sum} of a {Series} of {Exponential} {Monomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {563--578}, publisher = {mathdoc}, volume = {114}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a5/} }
TY - JOUR AU - A. S. Krivosheev AU - O. A. Krivosheeva TI - Domain of Existence of the Sum of a Series of Exponential Monomials JO - Matematičeskie zametki PY - 2023 SP - 563 EP - 578 VL - 114 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a5/ LA - ru ID - MZM_2023_114_4_a5 ER -
A. S. Krivosheev; O. A. Krivosheeva. Domain of Existence of the Sum of a Series of Exponential Monomials. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 563-578. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a5/
[1] A. S. Krivosheev, O. A. Krivosheeva, “Raspredelenie osobykh tochek summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Matem. sb., 211:1 (2020), 60–124 | DOI | MR
[2] J. Hadamard, “Essai sur l'etude des fonctions données par leur développement de Taylor”, J. Math. Pures Appl. (4), 4 (8) (1892), 101–106
[3] E. Fabry, “Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux”, Ann. Sci. École Norm. Sup. (3), 13 (1896), 367–399 | DOI | MR
[4] G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Z., 29:1 (1929), 549–640 | DOI | MR
[5] W. H. G. Fuchs, “On the growth of functions of mean type”, Proc. Edinburgh Math. Soc. (2), 9 (1954), 53–70 | DOI | MR
[6] P. Malliavin, “Sur la croissance radiale d'une fonction méromorphe”, Illinois J. Math., 1:2 (1952), 259–296 | MR
[7] G. Pólya, “Über die Existenz unendlich vieler singulárer Punkte auf der Konvergenzgeraden gewisser Dirichletscher Reihen”, Königlich Preub. Akad. Wiss., 1923, 45–50
[8] G. Pólya, “Eine Verallgemeinerung des Fabryschen Lückensatzes”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 2 (1927), 187–195
[9] A. F. Leontev, Ryady eksponent, Nauka, M., 1976
[10] V. Bernstein, Lecçons sur les progrés récents de la théorie des séries de Dirichlet, Gauthier-Villars, Paris, 1933
[11] O. A. Krivosheeva, A. S. Krivosheev, “Osobye tochki summy ryada Dirikhle na pryamoi skhodimosti”, Funkts. analiz i ego pril., 49:2 (2015), 54–69 | DOI | MR | Zbl
[12] A. S. Krivosheev, “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. matem., 68:2 (2004), 71–136 | DOI | MR | Zbl
[13] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR
[14] O. A. Krivosheeva, “Osobye tochki summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz, 23:2 (2011), 162–205 | MR | Zbl
[15] O. A. Krivosheeva, A. S. Krivosheev, “Singular points for the sum of a series of exponential monomials”, Issues Anal., 7 (25):2 (2018), 72–87 | DOI
[16] A. S. Krivosheev, O. A. Krivosheeva, “Representation of analytic functions by series of exponential monomials in convex domains and its applications”, Lobachevskii J. Math., 40:9 (2019), 1330–1354 | DOI | MR
[17] G. L. Lunts, “O ryadakh tipa Teilora–Dirikhle”, Izv. AN Armyanskoi SSR, 14:2 (1961), 7–16 | MR
[18] O. A. Krivosheeva, “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufimsk. matem. zhurn., 3:2 (2011), 43–56 | Zbl
[19] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR
[20] A. S. Krivosheev, O. A. Krivosheeva, “Bazis v invariantnom podprostranstve tselykh funktsii”, Algebra i analiz, 27:2 (2015), 132–195 | MR