Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 543-562

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a $2 \times 2$ system of ordinary differential equations $$ y'-By=\lambda Ay, \qquad y=y(x), \quad x \in [0, 1], $$ where $A=\operatorname{diag}\{a_1(x), a_2(x)\}$, $B=\{b_{kj}(x)\}_{k, j=1}$, and all functions occurring in the matrices are complex-valued and integrable. In the case $$ a_1,a_2, b_{21},b_{12} \in W^n_1[0,1], \qquad b_{11}, b_{22} \in W^{n-1}_1[0,1], $$ we obtain $n+1$ terms of the asymptotic expansion in powers of $\lambda^{-1}$, $\lambda \to \infty$, of the fundamental matrix of solutions of this equation. These asymptotic expansions are valid in the half-planes $\Pi_{\kappa}=\{\lambda \in \mathbb{C} \mid \operatorname{Re}{\lambda} \ge -\kappa \}$, $\kappa \in \mathbb{R}$, and $-\Pi_{\kappa}$ if $a_1(x)-a_2(x) >0$. They hold in the sectors $S=\{\lambda \in \mathbb{C} \mid \lvert\operatorname{arg}\lambda\rvert \le \pi/2-\phi-\varepsilon\}$, $\varepsilon > 0$, and $-S$ under the condition that $\lvert\operatorname{arg}\{a_1(x)-a_2(x)\}\rvert\phi\pi /2$. The main novelty of the work is that we assume minimal conditions for the smoothness of the functions and in addition we obtain explicit formulae for matrices involved in asymptotic expansions. The results are also new for the Dirac system.
Keywords: spectral asymptotics for solutions of ordinary differential equations and systems, regular and nonregular boundary value problems, spectral problems.
@article{MZM_2023_114_4_a4,
     author = {A. P. Kosarev and A. A. Shkalikov},
     title = {Asymptotics in the {Spectral} {Parameter} for {Solutions} of $2 \times 2$ {Systems} of {Ordinary} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {543--562},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/}
}
TY  - JOUR
AU  - A. P. Kosarev
AU  - A. A. Shkalikov
TI  - Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations
JO  - Matematičeskie zametki
PY  - 2023
SP  - 543
EP  - 562
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/
LA  - ru
ID  - MZM_2023_114_4_a4
ER  - 
%0 Journal Article
%A A. P. Kosarev
%A A. A. Shkalikov
%T Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations
%J Matematičeskie zametki
%D 2023
%P 543-562
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/
%G ru
%F MZM_2023_114_4_a4
A. P. Kosarev; A. A. Shkalikov. Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 543-562. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/