Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 543-562.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a $2 \times 2$ system of ordinary differential equations $$ y'-By=\lambda Ay, \qquad y=y(x), \quad x \in [0, 1], $$ where $A=\operatorname{diag}\{a_1(x), a_2(x)\}$, $B=\{b_{kj}(x)\}_{k, j=1}$, and all functions occurring in the matrices are complex-valued and integrable. In the case $$ a_1,a_2, b_{21},b_{12} \in W^n_1[0,1], \qquad b_{11}, b_{22} \in W^{n-1}_1[0,1], $$ we obtain $n+1$ terms of the asymptotic expansion in powers of $\lambda^{-1}$, $\lambda \to \infty$, of the fundamental matrix of solutions of this equation. These asymptotic expansions are valid in the half-planes $\Pi_{\kappa}=\{\lambda \in \mathbb{C} \mid \operatorname{Re}{\lambda} \ge -\kappa \}$, $\kappa \in \mathbb{R}$, and $-\Pi_{\kappa}$ if $a_1(x)-a_2(x) >0$. They hold in the sectors $S=\{\lambda \in \mathbb{C} \mid \lvert\operatorname{arg}\lambda\rvert \le \pi/2-\phi-\varepsilon\}$, $\varepsilon > 0$, and $-S$ under the condition that $\lvert\operatorname{arg}\{a_1(x)-a_2(x)\}\rvert\phi\pi /2$. The main novelty of the work is that we assume minimal conditions for the smoothness of the functions and in addition we obtain explicit formulae for matrices involved in asymptotic expansions. The results are also new for the Dirac system.
Keywords: spectral asymptotics for solutions of ordinary differential equations and systems, regular and nonregular boundary value problems, spectral problems.
@article{MZM_2023_114_4_a4,
     author = {A. P. Kosarev and A. A. Shkalikov},
     title = {Asymptotics in the {Spectral} {Parameter} for {Solutions} of $2 \times 2$ {Systems} of {Ordinary} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {543--562},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/}
}
TY  - JOUR
AU  - A. P. Kosarev
AU  - A. A. Shkalikov
TI  - Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations
JO  - Matematičeskie zametki
PY  - 2023
SP  - 543
EP  - 562
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/
LA  - ru
ID  - MZM_2023_114_4_a4
ER  - 
%0 Journal Article
%A A. P. Kosarev
%A A. A. Shkalikov
%T Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations
%J Matematičeskie zametki
%D 2023
%P 543-562
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/
%G ru
%F MZM_2023_114_4_a4
A. P. Kosarev; A. A. Shkalikov. Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 543-562. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/

[1] A. Schlissel, “The development of asymptotic solutions of linear ordinary differential equations, 1817–1920”, Arch. Hist. Exact Sci., 16:4 (1977), 307–378 | DOI | MR

[2] A. A. Shkalikov, “On the works of Ya. D. Tamarkin, their influence and development in asymptotic theory and spectral theory of operators”, Saint Petersburg Mathematicians and Their Theorems (to appear)

[3] G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9:2 (1908), 219–231 | DOI | MR

[4] G. D. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9:4 (1908), 373–395 | DOI | MR

[5] Ya. D. Tamarkin, O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Tip. M. P. Frolovoi, Petrograd, 1917

[6] G. D. Birkhoff, R. E. Langer, “The boundary problems and developments associated with a system of ordinary differential equations of the first order”, Proc. Amer. Acad. Arts Sci., 58:2 (1923), 51–128 | DOI

[7] I. M. Rapoport, O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954 | MR

[8] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[9] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969

[10] V. S. Rykhlov, “Asymptotical formulas for solutions of linear differential systems of the first order”, Results Math., 36:3–4 (1999), 342–353 | DOI | MR

[11] M. M. Malamud, L. L. Oridoroga, “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263:7 (2012), 1939–1980 | DOI | MR

[12] A. M. Savchuk, A. A. Shkalikov, “Asimptoticheskii analiz reshenii obyknovennykh differentsialnykh uravnenii s koeffitsientami-raspredeleniyami”, Matem. sb., 211:11 (2020), 129–166 | DOI | MR

[13] P. Djakov, B. Mityagin, “Riesz bases consisting of root functions of 1D Dirac operators”, Proc. Amer. Math. Soc., 141:4 (2011), 1361–1375 | DOI | MR

[14] A. M. Savchuk, A. A. Shkalikov, “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR

[15] A. S. Makin, “O regulyarnykh kraevykh zadachakh dlya operatora Diraka”, Dokl. RAN. Matem., inform., prots. upr., 492 (2020), 49–53 | DOI | Zbl

[16] A. A. Shkalikov, “Vozmuscheniya samosopryazhennykh i normalnykh operatorov s diskretnym spektrom”, UMN, 71:5 (431) (2016), 113–174 | DOI | MR | Zbl

[17] A. P. Kosarev, A. A. Shkalikov, “Spektralnye asimptotiki reshenii $(2\times 2)$-sistemy obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Matem. zametki, 110:6 (2021), 939–943 | DOI

[18] A. A. Shkalikov, “Regulyarnye spektralnye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii pervogo poryadka”, UMN, 76:5 (461) (2021), 203–204 | DOI | MR | Zbl

[19] A. A. Shkalikov, “Regulyarnye spektralnye zadachi giperbolicheskogo tipa dlya sistemy obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Matem. zametki, 110:5 (2021), 796–800 | DOI