Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 543-562
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a $2 \times 2$ system of ordinary differential equations
$$
y'-By=\lambda Ay,
\qquad y=y(x),
\quad x \in [0, 1],
$$
where $A=\operatorname{diag}\{a_1(x), a_2(x)\}$, $B=\{b_{kj}(x)\}_{k, j=1}$, and all functions occurring in the matrices are complex-valued and integrable. In the case
$$
a_1,a_2, b_{21},b_{12} \in W^n_1[0,1],
\qquad
b_{11}, b_{22} \in W^{n-1}_1[0,1],
$$
we obtain $n+1$ terms of the asymptotic expansion in powers of $\lambda^{-1}$, $\lambda \to \infty$, of the fundamental matrix of solutions of this equation. These asymptotic expansions are valid in the half-planes $\Pi_{\kappa}=\{\lambda \in \mathbb{C} \mid \operatorname{Re}{\lambda} \ge -\kappa \}$, $\kappa \in \mathbb{R}$, and $-\Pi_{\kappa}$ if $a_1(x)-a_2(x) >0$. They hold in the sectors $S=\{\lambda \in \mathbb{C} \mid \lvert\operatorname{arg}\lambda\rvert \le \pi/2-\phi-\varepsilon\}$, $\varepsilon > 0$, and $-S$ under the condition that $\lvert\operatorname{arg}\{a_1(x)-a_2(x)\}\rvert\phi\pi /2$. The main novelty of the work is that we assume minimal conditions for the smoothness of the functions and in addition we obtain explicit formulae for matrices involved in asymptotic expansions. The results are also new for the Dirac system.
Keywords:
spectral asymptotics for solutions of ordinary differential equations and systems, regular and nonregular boundary value problems, spectral problems.
@article{MZM_2023_114_4_a4,
author = {A. P. Kosarev and A. A. Shkalikov},
title = {Asymptotics in the {Spectral} {Parameter} for {Solutions} of $2 \times 2$ {Systems} of {Ordinary} {Differential} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {543--562},
publisher = {mathdoc},
volume = {114},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/}
}
TY - JOUR AU - A. P. Kosarev AU - A. A. Shkalikov TI - Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations JO - Matematičeskie zametki PY - 2023 SP - 543 EP - 562 VL - 114 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/ LA - ru ID - MZM_2023_114_4_a4 ER -
%0 Journal Article %A A. P. Kosarev %A A. A. Shkalikov %T Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations %J Matematičeskie zametki %D 2023 %P 543-562 %V 114 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/ %G ru %F MZM_2023_114_4_a4
A. P. Kosarev; A. A. Shkalikov. Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 543-562. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a4/