Feedback Strategies in a Game-Theoretical Control Problem for a Nonlocal Continuity Equation
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 525-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with game-theoretical control problem for the continuity equation. It is assumed that all agents of a multiagent system are influenced by the same controls of both players depending only on current time and current distribution of the agents. We extend the notion of $u$- and $v$-stability and the Krasovskii–Subbotin extremal shift rule to a given case and construct suboptimal strategies of players. Also, the existence theorem for a value function is proved.
Keywords: feedback control, differential game, nonlocal continuity equation, extremal shift rule.
@article{MZM_2023_114_4_a3,
     author = {E. A. Kolpakova},
     title = {Feedback {Strategies} in a {Game-Theoretical} {Control} {Problem} for a {Nonlocal} {Continuity} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {525--542},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a3/}
}
TY  - JOUR
AU  - E. A. Kolpakova
TI  - Feedback Strategies in a Game-Theoretical Control Problem for a Nonlocal Continuity Equation
JO  - Matematičeskie zametki
PY  - 2023
SP  - 525
EP  - 542
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a3/
LA  - ru
ID  - MZM_2023_114_4_a3
ER  - 
%0 Journal Article
%A E. A. Kolpakova
%T Feedback Strategies in a Game-Theoretical Control Problem for a Nonlocal Continuity Equation
%J Matematičeskie zametki
%D 2023
%P 525-542
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a3/
%G ru
%F MZM_2023_114_4_a3
E. A. Kolpakova. Feedback Strategies in a Game-Theoretical Control Problem for a Nonlocal Continuity Equation. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 525-542. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a3/

[1] P. Cardaliaguet, M. Quincampoix, “Deterministic differential games under probability knowledge of initial condition”, Int. Game Theory Rev., 10:1 (2008), 1–16 | DOI | MR

[2] A. Marigonda, M. Quincampoix, “Mayer control problem with probabilistic uncertainty on initial positions”, J. Differential Equations, 264:5 (2018), 3212–3252 | DOI | MR

[3] R. Colombo, M. Herty, M. Mercier, “Control of the continuity equation with a non local flow”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 353–379 | DOI | MR

[4] R. Brockett, “Notes on the control of the Liouville equation”, Control of Partial Differential Equations, Lecture Notes in Math., 2048, 2012, 101–129 | DOI | MR

[5] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[6] A. I. Subbotin, A. G. Chentsov, Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[7] R. J. Elliott, N. J. Kalton, “Values in differential games”, Bull. Amer. Math. Soc., 78 (1972), 427–431 | DOI | MR

[8] P. Varaya, J. Lin, “Existence of saddle points in differential games”, SIAM J. Control, 7:1 (1969), 142–157

[9] A. I. Subbotin, Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003

[10] T. Basar, J. Moon, “Zero-sum differential games on the Wasserstein space”, Commun. Inf. Syst., 21:2 (2021), 219–251 | DOI | MR

[11] B. Piccoli, F. Rossi, “Measure-theoretic models for crowd dynamics”, Crowd Dynamics, v. 1, Model. Simul. Sci. Eng. Technol., Theory, Models, and Safety Problems, Birkhauser, Basel, 2018, 137–165 | MR

[12] A. Cosso, H. Pham, “Zero-sum stochastic differential games of generalized McKean-Vlasov type”, J. Math. Pures Appl. (9), 129 (2019), 180–212 | MR

[13] Yu. Averboukh, “A stability property in mean field type differential games”, J. Math. Anal. Appl., 498:1 (2021), 124940 | DOI | MR

[14] V. I. Bogachev, Osnovy teorii mery, RKhD, M.–Izhevsk, 2003

[15] Dzh. Varga, Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[16] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–238 | MR

[17] L. Ambrosio, N. Gigli, G. Savare, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhauser, Basel, 2005 | MR

[18] F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and modeling, Birkhauser, Basel, 2015 | MR

[19] Y. Averboukh, “Krasovskii–Subbotin approach to mean field type differential games”, Dyn. Games Appl., 9:3 (2019), 573–593 | DOI | MR

[20] Y. Averboukh, Stability analysis of mean field type control system with major agent, 2022, arXiv: 2212.05736