Nondeformed Generalized Dunkl transform on the Line
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 509-524

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Dunkl transform can be the $(k,a)$-generalized Fourier transform, but it deforms good classes of functions, for example, the Schwartz space. In this paper, we study the nondeformed generalized Dunkl transform on the line. Two generalized translation operators are defined. Integral representations are obtained for them and $L_p$-boundedness is proved. Two convolutions are defined for which the Young theorem is established. As an application, we study conditions for the $L_p$-convergence of generalized means.
Keywords: generalized Fourier transform, generalized Dunkl transform, generalized translation operator, convolutions and generalized means.
@article{MZM_2023_114_4_a2,
     author = {V. I. Ivanov},
     title = {Nondeformed {Generalized} {Dunkl} transform on the {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {509--524},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Nondeformed Generalized Dunkl transform on the Line
JO  - Matematičeskie zametki
PY  - 2023
SP  - 509
EP  - 524
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/
LA  - ru
ID  - MZM_2023_114_4_a2
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Nondeformed Generalized Dunkl transform on the Line
%J Matematičeskie zametki
%D 2023
%P 509-524
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/
%G ru
%F MZM_2023_114_4_a2
V. I. Ivanov. Nondeformed Generalized Dunkl transform on the Line. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 509-524. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/