Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_4_a2, author = {V. I. Ivanov}, title = {Nondeformed {Generalized} {Dunkl} transform on the {Line}}, journal = {Matemati\v{c}eskie zametki}, pages = {509--524}, publisher = {mathdoc}, volume = {114}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/} }
V. I. Ivanov. Nondeformed Generalized Dunkl transform on the Line. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 509-524. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/
[1] C. F. Dunkl, “Integral kernels with reflection group invariance”, Canad. J. Math., 43:6 (1991), 1213–1227 | DOI | MR
[2] M. Rösler, “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer-Verlag, Berlin, 2003, 93–135 | DOI | MR
[3] S. Ben Saïd, T. Kobayashi, B. Ørsted, “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR
[4] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, On the Kernel of $(\kappa,a)$-generalized Fourier Transform, arXiv: 2210.15730
[5] M. A. Boubatra, S. Negzaoui, M. Sifi, “A new product formula involving Bessel functions”, Integral Transforms Spec. Funct., 33:3 (2022), 247–263 | DOI | MR
[6] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. II, McGraw Hill, New York, 1953 | MR
[7] M. Rösler, “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192:3 (1998), 519–542 | DOI | MR
[8] K. Trimèche, “Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators”, Integral Transforms Spec. Funct., 13:1 (2002), 17–38 | DOI | MR
[9] M. Rösler, “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR
[10] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR
[11] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Pitt's inequalities and uncertainty principle for generalized Fourier transform”, Int. Math. Res. Not. IMRN, 23 (2016), 7179–7200 | DOI | MR
[12] V. I. Ivanov, “Preobrazovanie Rissa dlya odnomernogo $(k,1)$-obobschennogo preobrazovaniya Fure”, Matem. zametki, 113:3 (2023), 360–373 | DOI | MR
[13] G. N. Watson, A Treatise on the Theory of Bessel Functions., Cambridge Univ. Press, Cambridge, 1966 | MR
[14] H. Mejjaoli, “Deformed Stockwell transform and applications on the reproducing kernel theory”, Int. J. Reprod. Kernels, 1:1 (2022), 1–39
[15] H. Mejjaoli, K. Trimèche, “Localization operators and scalogram associated with the deformed Hankel wavelet transform”, Mediterr. J. Math., 20:3 (2023), 186 | DOI | MR
[16] S. S. Platonov, “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matem., 71:5 (2007), 149–196 | DOI | MR | Zbl
[17] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 | MR
[18] S. Thangavelu, Y. Xu, “Convolution operator and maximal function for the Dunkl transform”, J. Anal. Math., 97 (2005), 25–55 | DOI | MR
[19] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. I, McGraw Hill, New York, 1953 | MR
[20] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, v. II, McGraw Hill, New York, 1954 | MR