Nondeformed Generalized Dunkl transform on the Line
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 509-524.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Dunkl transform can be the $(k,a)$-generalized Fourier transform, but it deforms good classes of functions, for example, the Schwartz space. In this paper, we study the nondeformed generalized Dunkl transform on the line. Two generalized translation operators are defined. Integral representations are obtained for them and $L_p$-boundedness is proved. Two convolutions are defined for which the Young theorem is established. As an application, we study conditions for the $L_p$-convergence of generalized means.
Keywords: generalized Fourier transform, generalized Dunkl transform, generalized translation operator, convolutions and generalized means.
@article{MZM_2023_114_4_a2,
     author = {V. I. Ivanov},
     title = {Nondeformed {Generalized} {Dunkl} transform on the {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {509--524},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Nondeformed Generalized Dunkl transform on the Line
JO  - Matematičeskie zametki
PY  - 2023
SP  - 509
EP  - 524
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/
LA  - ru
ID  - MZM_2023_114_4_a2
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Nondeformed Generalized Dunkl transform on the Line
%J Matematičeskie zametki
%D 2023
%P 509-524
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/
%G ru
%F MZM_2023_114_4_a2
V. I. Ivanov. Nondeformed Generalized Dunkl transform on the Line. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 509-524. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a2/

[1] C. F. Dunkl, “Integral kernels with reflection group invariance”, Canad. J. Math., 43:6 (1991), 1213–1227 | DOI | MR

[2] M. Rösler, “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer-Verlag, Berlin, 2003, 93–135 | DOI | MR

[3] S. Ben Saïd, T. Kobayashi, B. Ørsted, “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR

[4] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, On the Kernel of $(\kappa,a)$-generalized Fourier Transform, arXiv: 2210.15730

[5] M. A. Boubatra, S. Negzaoui, M. Sifi, “A new product formula involving Bessel functions”, Integral Transforms Spec. Funct., 33:3 (2022), 247–263 | DOI | MR

[6] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. II, McGraw Hill, New York, 1953 | MR

[7] M. Rösler, “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192:3 (1998), 519–542 | DOI | MR

[8] K. Trimèche, “Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators”, Integral Transforms Spec. Funct., 13:1 (2002), 17–38 | DOI | MR

[9] M. Rösler, “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR

[10] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR

[11] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Pitt's inequalities and uncertainty principle for generalized Fourier transform”, Int. Math. Res. Not. IMRN, 23 (2016), 7179–7200 | DOI | MR

[12] V. I. Ivanov, “Preobrazovanie Rissa dlya odnomernogo $(k,1)$-obobschennogo preobrazovaniya Fure”, Matem. zametki, 113:3 (2023), 360–373 | DOI | MR

[13] G. N. Watson, A Treatise on the Theory of Bessel Functions., Cambridge Univ. Press, Cambridge, 1966 | MR

[14] H. Mejjaoli, “Deformed Stockwell transform and applications on the reproducing kernel theory”, Int. J. Reprod. Kernels, 1:1 (2022), 1–39

[15] H. Mejjaoli, K. Trimèche, “Localization operators and scalogram associated with the deformed Hankel wavelet transform”, Mediterr. J. Math., 20:3 (2023), 186 | DOI | MR

[16] S. S. Platonov, “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matem., 71:5 (2007), 149–196 | DOI | MR | Zbl

[17] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 | MR

[18] S. Thangavelu, Y. Xu, “Convolution operator and maximal function for the Dunkl transform”, J. Anal. Math., 97 (2005), 25–55 | DOI | MR

[19] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. I, McGraw Hill, New York, 1953 | MR

[20] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, v. II, McGraw Hill, New York, 1954 | MR