An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 628-632.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: hydrodynamics, Kelvin–Voigt model, inhomogeneous fluid, weak solution, existence theorem.
@article{MZM_2023_114_4_a11,
     author = {V. G. Zvyagin and M. V. Turbin},
     title = {An {Existence} {Theorem} for {Weak} {Solutions} of the {Initial--Boundary} {Value} {Problem} for the {Inhomogeneous} {Incompressible} {Kelvin--Voigt} {Model} in {Which} the {Initial} {Value} of {Density} is {Not} {Bounded} from {Below}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {628--632},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - M. V. Turbin
TI  - An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below
JO  - Matematičeskie zametki
PY  - 2023
SP  - 628
EP  - 632
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/
LA  - ru
ID  - MZM_2023_114_4_a11
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A M. V. Turbin
%T An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below
%J Matematičeskie zametki
%D 2023
%P 628-632
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/
%G ru
%F MZM_2023_114_4_a11
V. G. Zvyagin; M. V. Turbin. An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 628-632. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/

[1] A. V. Kazhikhov, Dokl. AN SSSR, 216:5 (1974), 1008–1010 | MR | Zbl

[2] J. Simon, SIAM J. Math. Anal., 21:5 (1990), 1093–1117 | DOI | MR

[3] R. J. DiPerna, P.-L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR

[4] P.-L. Lions, Mathematical Topics in Fluid Mechanics, v. 1, Oxford Lecture Ser. Math. Appl., 3, Incompressible Models, Clarendon Press, Oxford, 1996 | MR

[5] V. G. Zvyagin, M. V. Turbin, Gidrodinamika, SMFN, 31, RUDN, M., 2009, 3–144 | MR

[6] A. P. Oskolkov, Kraevye zadachi matematicheskoi fiziki. 13, Tr. MIAN SSSR, 179, 1988, 126–164 | MR | Zbl

[7] C. Amrouche, L. C. Berselli, R. Lewandowski, D. D. Nguyen, Nonlinear, 196 (2020), Article 111790 | DOI | MR

[8] A. V. Zvyagin, Matem. zametki, 105:6 (2019), 839–856 | DOI | MR

[9] A. V. Zvyagin, V. P. Orlov, Matem. zametki, 97:5 (2015), 681–698 | DOI | MR

[10] A. Ustiuzhaninova, M. Turbin, J. Dyn. Control Syst., 28:3 (2022), 465–480 | DOI | MR

[11] M. Turbin, A. Ustiuzhaninova, Evol. Equ. Control Theory, 11:6 (2022), 2055–2072 | DOI | MR

[12] S. N. Antontsev, H. B. de Oliveira, Kh. Khompysh, Nonlinearity, 34:5 (2021), 3083–3111 | DOI | MR

[13] V. G. Zvyagin, M. V. Turbin, Dokl. RAN. Matem., inform., prots. upr., 509 (2023), 13–16 | DOI

[14] V. Zvyagin, M. Turbin, J. Fixed Point Theory Appl., 23:1 (2021), Article 4 | MR

[15] V. G. Zvyagin, M. V. Turbin, Izv. vuzov. Matem., 2020, no. 4, 93–98 | DOI

[16] V. G. Zvyagin, Trudy Shestoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam (Moskva, 2011), SMFN, 46, RUDN, M., 2012, 92–119

[17] R. Temam, Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR

[18] J. Simon, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96 | DOI | MR