Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_4_a11, author = {V. G. Zvyagin and M. V. Turbin}, title = {An {Existence} {Theorem} for {Weak} {Solutions} of the {Initial--Boundary} {Value} {Problem} for the {Inhomogeneous} {Incompressible} {Kelvin--Voigt} {Model} in {Which} the {Initial} {Value} of {Density} is {Not} {Bounded} from {Below}}, journal = {Matemati\v{c}eskie zametki}, pages = {628--632}, publisher = {mathdoc}, volume = {114}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/} }
TY - JOUR AU - V. G. Zvyagin AU - M. V. Turbin TI - An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below JO - Matematičeskie zametki PY - 2023 SP - 628 EP - 632 VL - 114 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/ LA - ru ID - MZM_2023_114_4_a11 ER -
%0 Journal Article %A V. G. Zvyagin %A M. V. Turbin %T An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below %J Matematičeskie zametki %D 2023 %P 628-632 %V 114 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/ %G ru %F MZM_2023_114_4_a11
V. G. Zvyagin; M. V. Turbin. An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 628-632. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/