An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 628-632

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: hydrodynamics, Kelvin–Voigt model, inhomogeneous fluid, weak solution, existence theorem.
@article{MZM_2023_114_4_a11,
     author = {V. G. Zvyagin and M. V. Turbin},
     title = {An {Existence} {Theorem} for {Weak} {Solutions} of the {Initial--Boundary} {Value} {Problem} for the {Inhomogeneous} {Incompressible} {Kelvin--Voigt} {Model} in {Which} the {Initial} {Value} of {Density} is {Not} {Bounded} from {Below}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {628--632},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - M. V. Turbin
TI  - An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below
JO  - Matematičeskie zametki
PY  - 2023
SP  - 628
EP  - 632
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/
LA  - ru
ID  - MZM_2023_114_4_a11
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A M. V. Turbin
%T An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below
%J Matematičeskie zametki
%D 2023
%P 628-632
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/
%G ru
%F MZM_2023_114_4_a11
V. G. Zvyagin; M. V. Turbin. An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 628-632. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/