@article{MZM_2023_114_4_a11,
author = {V. G. Zvyagin and M. V. Turbin},
title = {An {Existence} {Theorem} for {Weak} {Solutions} of the {Initial{\textendash}Boundary} {Value} {Problem} for the {Inhomogeneous} {Incompressible} {Kelvin{\textendash}Voigt} {Model} in {Which} the {Initial} {Value} of {Density} is {Not} {Bounded} from {Below}},
journal = {Matemati\v{c}eskie zametki},
pages = {628--632},
year = {2023},
volume = {114},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/}
}
TY - JOUR AU - V. G. Zvyagin AU - M. V. Turbin TI - An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below JO - Matematičeskie zametki PY - 2023 SP - 628 EP - 632 VL - 114 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/ LA - ru ID - MZM_2023_114_4_a11 ER -
%0 Journal Article %A V. G. Zvyagin %A M. V. Turbin %T An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below %J Matematičeskie zametki %D 2023 %P 628-632 %V 114 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/ %G ru %F MZM_2023_114_4_a11
V. G. Zvyagin; M. V. Turbin. An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 628-632. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/
[1] A. V. Kazhikhov, Dokl. AN SSSR, 216:5 (1974), 1008–1010 | MR | Zbl
[2] J. Simon, SIAM J. Math. Anal., 21:5 (1990), 1093–1117 | DOI | MR
[3] R. J. DiPerna, P.-L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR
[4] P.-L. Lions, Mathematical Topics in Fluid Mechanics, v. 1, Oxford Lecture Ser. Math. Appl., 3, Incompressible Models, Clarendon Press, Oxford, 1996 | MR
[5] V. G. Zvyagin, M. V. Turbin, Gidrodinamika, SMFN, 31, RUDN, M., 2009, 3–144 | MR
[6] A. P. Oskolkov, Kraevye zadachi matematicheskoi fiziki. 13, Tr. MIAN SSSR, 179, 1988, 126–164 | MR | Zbl
[7] C. Amrouche, L. C. Berselli, R. Lewandowski, D. D. Nguyen, Nonlinear, 196 (2020), Article 111790 | DOI | MR
[8] A. V. Zvyagin, Matem. zametki, 105:6 (2019), 839–856 | DOI | MR
[9] A. V. Zvyagin, V. P. Orlov, Matem. zametki, 97:5 (2015), 681–698 | DOI | MR
[10] A. Ustiuzhaninova, M. Turbin, J. Dyn. Control Syst., 28:3 (2022), 465–480 | DOI | MR
[11] M. Turbin, A. Ustiuzhaninova, Evol. Equ. Control Theory, 11:6 (2022), 2055–2072 | DOI | MR
[12] S. N. Antontsev, H. B. de Oliveira, Kh. Khompysh, Nonlinearity, 34:5 (2021), 3083–3111 | DOI | MR
[13] V. G. Zvyagin, M. V. Turbin, Dokl. RAN. Matem., inform., prots. upr., 509 (2023), 13–16 | DOI
[14] V. Zvyagin, M. Turbin, J. Fixed Point Theory Appl., 23:1 (2021), Article 4 | MR
[15] V. G. Zvyagin, M. V. Turbin, Izv. vuzov. Matem., 2020, no. 4, 93–98 | DOI
[16] V. G. Zvyagin, Trudy Shestoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam (Moskva, 2011), SMFN, 46, RUDN, M., 2012, 92–119
[17] R. Temam, Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR
[18] J. Simon, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96 | DOI | MR