Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_4_a11, author = {V. G. Zvyagin and M. V. Turbin}, title = {An {Existence} {Theorem} for {Weak} {Solutions} of the {Initial--Boundary} {Value} {Problem} for the {Inhomogeneous} {Incompressible} {Kelvin--Voigt} {Model} in {Which} the {Initial} {Value} of {Density} is {Not} {Bounded} from {Below}}, journal = {Matemati\v{c}eskie zametki}, pages = {628--632}, publisher = {mathdoc}, volume = {114}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/} }
TY - JOUR AU - V. G. Zvyagin AU - M. V. Turbin TI - An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below JO - Matematičeskie zametki PY - 2023 SP - 628 EP - 632 VL - 114 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/ LA - ru ID - MZM_2023_114_4_a11 ER -
%0 Journal Article %A V. G. Zvyagin %A M. V. Turbin %T An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below %J Matematičeskie zametki %D 2023 %P 628-632 %V 114 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/ %G ru %F MZM_2023_114_4_a11
V. G. Zvyagin; M. V. Turbin. An Existence Theorem for Weak Solutions of the Initial--Boundary Value Problem for the Inhomogeneous Incompressible Kelvin--Voigt Model in Which the Initial Value of Density is Not Bounded from Below. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 628-632. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a11/
[1] A. V. Kazhikhov, Dokl. AN SSSR, 216:5 (1974), 1008–1010 | MR | Zbl
[2] J. Simon, SIAM J. Math. Anal., 21:5 (1990), 1093–1117 | DOI | MR
[3] R. J. DiPerna, P.-L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR
[4] P.-L. Lions, Mathematical Topics in Fluid Mechanics, v. 1, Oxford Lecture Ser. Math. Appl., 3, Incompressible Models, Clarendon Press, Oxford, 1996 | MR
[5] V. G. Zvyagin, M. V. Turbin, Gidrodinamika, SMFN, 31, RUDN, M., 2009, 3–144 | MR
[6] A. P. Oskolkov, Kraevye zadachi matematicheskoi fiziki. 13, Tr. MIAN SSSR, 179, 1988, 126–164 | MR | Zbl
[7] C. Amrouche, L. C. Berselli, R. Lewandowski, D. D. Nguyen, Nonlinear, 196 (2020), Article 111790 | DOI | MR
[8] A. V. Zvyagin, Matem. zametki, 105:6 (2019), 839–856 | DOI | MR
[9] A. V. Zvyagin, V. P. Orlov, Matem. zametki, 97:5 (2015), 681–698 | DOI | MR
[10] A. Ustiuzhaninova, M. Turbin, J. Dyn. Control Syst., 28:3 (2022), 465–480 | DOI | MR
[11] M. Turbin, A. Ustiuzhaninova, Evol. Equ. Control Theory, 11:6 (2022), 2055–2072 | DOI | MR
[12] S. N. Antontsev, H. B. de Oliveira, Kh. Khompysh, Nonlinearity, 34:5 (2021), 3083–3111 | DOI | MR
[13] V. G. Zvyagin, M. V. Turbin, Dokl. RAN. Matem., inform., prots. upr., 509 (2023), 13–16 | DOI
[14] V. Zvyagin, M. Turbin, J. Fixed Point Theory Appl., 23:1 (2021), Article 4 | MR
[15] V. G. Zvyagin, M. V. Turbin, Izv. vuzov. Matem., 2020, no. 4, 93–98 | DOI
[16] V. G. Zvyagin, Trudy Shestoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam (Moskva, 2011), SMFN, 46, RUDN, M., 2012, 92–119
[17] R. Temam, Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR
[18] J. Simon, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96 | DOI | MR