Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_3_a8, author = {A. V. Shutov}, title = {On the {Sum} of {Digits} of {Expansions} of a {Pair} of {Consecutive} {Numbers} over a {Linear} {Recurrent} {Sequence}}, journal = {Matemati\v{c}eskie zametki}, pages = {447--457}, publisher = {mathdoc}, volume = {114}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a8/} }
TY - JOUR AU - A. V. Shutov TI - On the Sum of Digits of Expansions of a Pair of Consecutive Numbers over a Linear Recurrent Sequence JO - Matematičeskie zametki PY - 2023 SP - 447 EP - 457 VL - 114 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a8/ LA - ru ID - MZM_2023_114_3_a8 ER -
A. V. Shutov. On the Sum of Digits of Expansions of a Pair of Consecutive Numbers over a Linear Recurrent Sequence. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 447-457. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a8/
[1] G. Parry, “On the $\beta$-expansions of real numbers”, Acta Math. Acad. Sci. Hungar., 11:3 (1960), 401–416 | DOI | MR
[2] A. Shutov, “On the sum of digits of the Zeckendorf representations of two consecutive numbers”, Fibonacci Quart., 58:3 (2020), 203–207 | MR
[3] A. V. Shutov, “Ob odnoi summe, svyazannoi s sistemoi schisleniya Fibonachchi”, Dalnevost. matem. zhurn., 20:2 (2020), 271–275 | DOI
[4] K. Mahler, “The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions: part two on the translation properties of a simple class of arithmetical functions”, J. Math. and Physics, 6 (1927), 158–163 | DOI
[5] K. M. Eminyan, “Ob odnoi binarnoi zadache”, Matem. zametki, 60:4 (1996), 634–637 | DOI | MR | Zbl
[6] C. Frougny, B. Solomyak, “Finite beta-expansions”, Ergodic Theory Dynam. Systems, 12:4 (1992), 713–723 | DOI | MR
[7] V. Berthe, A. Siegel, “Tilings associated with beta-numeration and substitutions”, Integers, 5:3 (2008), A02 | MR
[8] S. Akiyama, G. Barat, V. Berthe, A. Siegel, “Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions”, Monatsh. Math., 155:3–4 (2008), 377–419 | DOI | MR
[9] A. V. Shutov, “Obobschennye razbieniya Rozi i lineinye rekurrentnye posledovatelnosti”, Chebyshevskii sb., 22:2 (2021), 313–333 | DOI | MR
[10] S. Akiyama, “Self affine tiling and Pisot numeration system”, Number Theory and its Applications (Kyoto, 1997), Dev. Math., 2, Kluwer Acad. Publ., Dordrecht, 1999, 7–17 | MR
[11] A. V. Shutov, “Obobschennye razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Chebyshevskii sb., 20:3 (2019), 372–389 | DOI | MR
[12] P. Arnoux, S. Ito, “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin, 8:2 (2001), 181–207 | DOI | MR
[13] S. Akiyama, “Pisot number system and its dual tiling”, Physics and Theoretical Computer Science, NATO Secur. Sci. Ser. D Inf. Commun. Secur., 7, IOS Press, Amsterdam, 2007, 133–154 | MR
[14] M. Drmota, J. Gajdosik, “The parity of the sum-of-digits-function of generalized Zeckendorf representations”, Fibonacci Quart., 36:1 (1998), 3–19 | MR
[15] M. Lamberger, J. W. Thuswaldner, “Distribution properties of digital expansions arising from linear recurrences”, Math. Slovaca, 53:1 (2003), 1–20 | MR
[16] A. A. Zhukova, A. V. Shutov, “Ob analoge zadachi Gelfonda dlya obobschennykh razlozhenii Tsekkendorfa”, Chebyshevskii sb., 22:2 (2021), 104–120 | DOI | MR