Traces of Sobolev Spaces on Piecewise Ahlfors--David Regular Sets
Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 404-434

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\operatorname{X},\operatorname{d},\mu)$ be a metric measure space with uniformly locally doubling measure $\mu$. Given $p \in (1,\infty)$, assume that $(\operatorname{X},\operatorname{d},\mu)$ supports a weak local $(1,p)$-Poincaré inequality. We characterize trace spaces of the first-order Sobolev $W^{1}_{p}(\operatorname{X})$-spaces to subsets $S$ of $\operatorname{X}$ that can be represented as a finite union $\bigcup_{i=1}^{N}S^{i}$, $N \in \mathbb{N}$, of Ahlfors–David regular subsets $S^{i} \subset \operatorname{X}$, $i \in \{1,\dots,N\}$, of different codimensions. Furthermore, we explicitly compute the corresponding trace norms up to some universal constants.
Mots-clés : Sobolev spaces
Keywords: metric measure spaces, lower content regular sets, Frostman-type measures.
@article{MZM_2023_114_3_a6,
     author = {A. I. Tyulenev},
     title = {Traces of {Sobolev} {Spaces} on {Piecewise} {Ahlfors--David} {Regular} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {404--434},
     publisher = {mathdoc},
     volume = {114},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a6/}
}
TY  - JOUR
AU  - A. I. Tyulenev
TI  - Traces of Sobolev Spaces on Piecewise Ahlfors--David Regular Sets
JO  - Matematičeskie zametki
PY  - 2023
SP  - 404
EP  - 434
VL  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a6/
LA  - ru
ID  - MZM_2023_114_3_a6
ER  - 
%0 Journal Article
%A A. I. Tyulenev
%T Traces of Sobolev Spaces on Piecewise Ahlfors--David Regular Sets
%J Matematičeskie zametki
%D 2023
%P 404-434
%V 114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a6/
%G ru
%F MZM_2023_114_3_a6
A. I. Tyulenev. Traces of Sobolev Spaces on Piecewise Ahlfors--David Regular Sets. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 404-434. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a6/