On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems
Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 370-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $\mathbb R^d$, we consider matrix elliptic operators $L_\varepsilon$ of arbitrary even order $2m\ge 4$ with measurable $\varepsilon$-periodic coefficients, where $\varepsilon$ is a small parameter. We construct an approximation to the resolvent of this operator with an error of the order of $\varepsilon^2$ in the operator $(L^2\to L^2)$-norm.
Keywords: homogenization, approximation to the resolvent, higher-order elliptic system.
@article{MZM_2023_114_3_a4,
     author = {S. E. Pastukhova},
     title = {On {Operator} {Estimates} of the {Homogenization} of {Higher-Order} {Elliptic} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {370--389},
     publisher = {mathdoc},
     volume = {114},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a4/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems
JO  - Matematičeskie zametki
PY  - 2023
SP  - 370
EP  - 389
VL  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a4/
LA  - ru
ID  - MZM_2023_114_3_a4
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems
%J Matematičeskie zametki
%D 2023
%P 370-389
%V 114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a4/
%G ru
%F MZM_2023_114_3_a4
S. E. Pastukhova. On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 370-389. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a4/

[1] A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978 | MR

[2] V. V. Zhikov, C. M. Kozlov, O. A. Oleinik, Kha Ten Ngoan, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, UMN, 34:5 (209) (1979), 65–133 | MR | Zbl

[3] S. E. Pastukhova, “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7 (2016), 1449–1466 | DOI | MR

[4] N. A. Veniaminov, “Usrednenie periodicheskikh differentsialnykh operatorov vysokogo poryadka”, Algebra i analiz, 22:5 (2010), 69–103 | MR | Zbl

[5] A. A. Kukushkin, T. A. Suslina, “Usrednenie ellipticheskikh operatorov vysokogo poryadka s periodicheskimi koeffitsientami”, Algebra i analiz, 28:1 (2016), 89–149 | MR

[6] S. E. Pastukhova, “Operatornye otsenki usredneniya dlya ellipticheskikh uravnenii chetvertogo poryadka”, Algebra i analiz, 28:2 (2016), 204–226 | MR

[7] S. E. Pastukhova, “$L^2$-approximation of resolvents in homogenization of higher order elliptic operators”, J. Math. Sci. (N.Y.), 251:6 (2020), 902–925 | DOI | MR

[8] S. E. Pastukhova, “Improved approximations of resolvent in homogenization of higher order operators”, J. Math. Sci. (N.Y.), 259:2 (2021), 230–243 | DOI | MR

[9] V. V. Zhikov, “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. AN, 403:3 (2005), 305–308 | MR

[10] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR

[11] S. E. Pastukhova, “Improved approximations of resolvents in homogenization of fourth order operators”, J. Math. Sci. (N.Y.), 255:4 (2021), 488–502 | DOI | MR

[12] S. E. Pastukhova, “$L^2$-approksimatsiya rezolventy v usrednenii ellipticheskikh operatorov chetvertogo poryadka”, Matem. sb., 212:1 (2021), 119–142 | DOI | MR

[13] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl

[14] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[15] V. V. Zhikov, S. E. Pastukhova, “Ob operatornykh otsenkakh v teorii usredneniya”, UMN, 71:3 (429) (2016), 27–122 | DOI | MR | Zbl

[16] S. E. Pastukhova, “$L^2$-estimates for homogenization of elliptic operators”, J. Math. Sci. (N.Y.), 244:4 (2020), 671–685 | DOI | MR

[17] S. E. Pastukhova, “Homogenization estimates for singularly perturbed operators”, J. Math. Sci. (N.Y.), 251:5 (2020), 724–747 | DOI | MR

[18] S. E. Pastukhova, “$L^2$-approksimatsii rezolventy ellipticheskogo operatora v perforirovannom prostranstve”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, Rossiiskii universitet druzhby narodov, M., 2020, 314–334 | DOI

[19] V. A. Slousch, T. A. Suslina, “Usrednenie ellipticheskogo operatora chetvertogo poryadka s periodicheskimi koeffitsientami pri uchete korrektorov”, Funkts. analiz i ego pril., 54:3 (2020), 94–99 | DOI | MR

[20] V. A. Slousch, T. A. Suslina, “Usrednenie ellipticheskogo operatora chetvertogo poryadka s periodicheskimi koeffitsientami”, Sb. materialov mezhdunar. konf. KROMSh–2020, Poliprint, Simferopol, 2020, 186–188

[21] V. A. Slousch, T. A. Suslina, “Operatornye otsenki pri usrednenii ellipticheskikh operatorov vysokogo poryadka s periodicheskimi koeffitsientami”, Algebra i analiz, 35:2 (2023), 107–173

[22] V. A. Slousch, T. A. Suslina, “Porogovye approksimatsii rezolventy polinomialnogo neotritsatelnogo operatornogo puchka”, Algebra i analiz, 33:2 (2021), 233–274

[23] Nikita N. Senik, “Homogenization for locally periodic elliptic operators”, J. Math. Anal. Appl., 505:2 (2022), 125581 | DOI | MR

[24] S. E. Pastukhova, “Improved approximations of resolvents in homogenization of higher order operators. The selfadjoint case”, J. Math. Sci. (N.Y.), 262:3 (2022), 312–328 | DOI | MR

[25] S. E. Pastukhova, “Uluchshennye $L^2$-approksimatsii rezolventy v usrednenii operatorov chetvertogo poryadka”, Algebra i analiz, 34:4 (2022), 74–106 | MR