On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems
Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 370-389

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $\mathbb R^d$, we consider matrix elliptic operators $L_\varepsilon$ of arbitrary even order $2m\ge 4$ with measurable $\varepsilon$-periodic coefficients, where $\varepsilon$ is a small parameter. We construct an approximation to the resolvent of this operator with an error of the order of $\varepsilon^2$ in the operator $(L^2\to L^2)$-norm.
Keywords: homogenization, approximation to the resolvent, higher-order elliptic system.
@article{MZM_2023_114_3_a4,
     author = {S. E. Pastukhova},
     title = {On {Operator} {Estimates} of the {Homogenization} of {Higher-Order} {Elliptic} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {370--389},
     publisher = {mathdoc},
     volume = {114},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a4/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems
JO  - Matematičeskie zametki
PY  - 2023
SP  - 370
EP  - 389
VL  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a4/
LA  - ru
ID  - MZM_2023_114_3_a4
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems
%J Matematičeskie zametki
%D 2023
%P 370-389
%V 114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a4/
%G ru
%F MZM_2023_114_3_a4
S. E. Pastukhova. On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 370-389. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a4/