On Sufficient Conditions for the Consistency of Local Linear Kernel Estimators
Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 353-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

The consistency of classical local linear kernel estimators in nonparametric regression is proved under constraints on design elements (regressors) weaker than those known earlier. The obtained conditions are universal with respect to the stochastic nature of design, which may be both fixed regular and random and is not required to consist of independent or weakly dependent random variables. Sufficient conditions for pointwise and uniform consistency of classical local linear estimators are stated in terms of the asymptotic behavior of the number of design elements in certain neighborhoods of points in the domain of the regression function.
Keywords: nonparametric regression, local linear estimator, uniform consistency, fixed design, random design, highly dependent design elements.
@article{MZM_2023_114_3_a3,
     author = {Yu. Yu. Linke},
     title = {On {Sufficient} {Conditions} for the {Consistency} of {Local} {Linear} {Kernel} {Estimators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {353--369},
     publisher = {mathdoc},
     volume = {114},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a3/}
}
TY  - JOUR
AU  - Yu. Yu. Linke
TI  - On Sufficient Conditions for the Consistency of Local Linear Kernel Estimators
JO  - Matematičeskie zametki
PY  - 2023
SP  - 353
EP  - 369
VL  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a3/
LA  - ru
ID  - MZM_2023_114_3_a3
ER  - 
%0 Journal Article
%A Yu. Yu. Linke
%T On Sufficient Conditions for the Consistency of Local Linear Kernel Estimators
%J Matematičeskie zametki
%D 2023
%P 353-369
%V 114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a3/
%G ru
%F MZM_2023_114_3_a3
Yu. Yu. Linke. On Sufficient Conditions for the Consistency of Local Linear Kernel Estimators. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 353-369. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a3/

[1] J. Fan, I. Gijbels, Local Polynomial Modelling and Its Applications, Monographs on Stat. Appl. Prob., 66, Chapman Hall, London, 1996 | MR

[2] W. Hardle, M. Muller, S. Sperlich, A. Werwatz, Nonparametric and Semiparametric Models, Springer Ser. in Statistics, Springer-Verlag, Berlin, 2004 | MR

[3] J. Fan, Q. Yao, Nonlinear Time Series. Nonparametric and Parametric Methods, Springer Ser. in Statistics, Springer-Verlag, New York, 2003 | MR

[4] L. Györfi, M. Kohler, A. Krzyzak, H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer Ser. in Statistics, Springer-Verlag, New York, 2002 | MR

[5] W. Härdle, Applied Nonparametric Regression, Econometric Soc. Monog., 19, Cambridge Univ. Press, Cambridge, 1990 | MR

[6] C. Loader, Local Regression and Likelihood, Statistics and Computing, Springer-Verlag, New York, 1999 | MR

[7] H.-G. Müller, Nonparametric Regression Analysis of Longitudinal Data, Lecture Notes in Stat., 46, Springer-Verlag, New York, 1988 | MR

[8] I. S. Borisov, Yu. Yu. Linke, P. S. Ruzankin, “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 84:2 (2021), 141–166 | DOI | MR

[9] Y. Linke, I. Borisov, P. Ruzankin, V. Kutsenko, E. Yarovaya, S. Shalnova, “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10:15 (2022), 2693 | DOI

[10] Yu. Yu. Linke, I. S. Borisov, “Insensitivity of Nadaraya–Watson estimators to design correlation”, Comm. Statist. Theory Methods, 51:19 (2022), 6909–6918 | DOI | MR

[11] Yu. Yu. Linke, “K voprosu o nechuvstvitelnosti otsenok Nadaraya–Vatsona otnositelno korrelyatsii elementov dizaina”, Teoriya veroyatn. i ee primen., 68:2 (2023), 236–252 | DOI

[12] J. Beran, Y. Feng, “Local polynomial estimation with a FARIMA-GARCH error process”, Bernoulli, 7:5 (2001), 733–550 | DOI | MR

[13] D. Benelmadani, K. Benhenni, S. Louhichi, “Trapezoidal rule and sampling designs for the nonparametric estimation of the regression function in models with correlated errors”, Statistics, 54:1 (2020), 59–96 | DOI | MR

[14] X. Tang, M. Xi, Y. Wu, X. Wang, “Asymptotic normality of a wavelet estimator for asymptotically negatively associated errors”, Statist. Probab. Lett., 140 (2018), 191–201 | DOI | MR

[15] W. Gu, G. G. Roussas, L. T. Tran, “On the convergence rate of fixed design regression estimators for negatively associated random variables”, Statist. Probab. Lett., 77:12 (2007), 1214–1224 | DOI | MR

[16] J. S. Wu, C. K. Chu, “Nonparametric estimation of a regression function with dependent observations”, Stochastic Process. Appl., 50:1 (1994), 149–160 | DOI | MR

[17] K. Benhenni, S. Hedli-Griche, M. Rachdi, “Estimation of the regression operator from functional fixed-design with correlated errors”, J. Multivariate Anal., 101:2 (2010), 476–490 | DOI | MR

[18] D. A. Ioannides, “Consistent nonparametric regression: some generalizations in the fixed design case”, J. Nonparametr. Statist., 2:3 (1993), 203–213 | DOI | MR

[19] A. A. Georgiev, “Asymptotic properties of the multivariate Nadaraya–Watson regression function estimate: the fixed design case”, Statist. Probab. Lett., 7:1 (1989), 35–40 | DOI | MR

[20] W. Hardle, S. Luckhaus, “Uniform consistency of a class of regression function estimators”, Ann. Statist., 12:2 (2012), 612–623 | MR

[21] L. P. Devroye, “The uniform convergence of the Nadaraya–Watson regression function estimate”, Canad. J. Statist., 6:2 (1979), 179–191 | DOI | MR

[22] E. A. Nadaraya, “Zamechaniya o neparametricheskikh otsenkakh plotnosti veroyatnosti i krivoi regressii”, Teoriya veroyatn. i ee primen., 15:1 (1970), 139–142 | MR | Zbl

[23] H. Liero, “Strong uniform consistency of nonparametric regression function estimates”, Probab. Theory Related Fields, 82:4 (1989), 587–614 | DOI | MR

[24] Y. P. Mack, B. W. Silvermann, “Weak and strong uniform consistency of kernel regressionestimates”, Z. Wahrsch. Verw. Gebiete, 61:3 (1982), 405–415 | DOI | MR

[25] U. Einmahl, D. M. Mason, “Uniform in bandwidth consistency of kernel-type function estimators”, Ann. Statist., 33:3 (2005), 1380–1403 | MR

[26] T. Gasser, J. Engel, “The choice of weights in kernel regression estimation”, Biometrica, 77:2 (1990), 377–381 | DOI | MR

[27] C. K. Chu, W.-S. Deng, “An interpolation method for adapting to sparse design in multivariate nonparametric regression”, J. Statist. Plann. Inference, 116:1 (2003), 91–111 | DOI | MR

[28] Q. Li, X. Lu, A. Ullah, “Multivariate local polynomial regression for estimating average derivatives”, J. Nonparametr. Stat., 15:4–5 (2003), 607–624 | DOI | MR

[29] J. Gu, Q. Li, J.-C. Yang, “Multivariate local polynomial kernel estimators: leading bias and asymptotic distribution”, Econometric Rev., 34:6–10 (2015), 978–1009 | MR

[30] O. B. Linton, D. T. Jacho-Chavez, “On internally corrected and symmetrized kernel estimators for nonparametric regression”, TEST, 19:1 (2010), 166–186 | DOI | MR

[31] R. Kulik, P. Lorek, “Some results on random design regression with long memory errors and predictors”, J. Statist. Plann. Inference, 141:1 (2011), 508–523 | DOI | MR

[32] J. Shen, Y. Xie, “Strong consistency of the internal estimator of nonparametric regression with dependent data”, Statist. Probab. Lett., 83:8 (2013), 1915–1925 | MR

[33] E. Masry, “Multivariate local polynomial regression for time series: uniform strong consistency and rates”, J. Time Ser. Anal., 17:6 (1996), 571–599 | DOI | MR

[34] X. Li, W. Yang, S. Hu, “Uniform convergence of estimator for nonparametric regression with dependent data”, J. Inequal. Appl., 2016, 142 | MR

[35] S. J. Hong, O. B. Linton, “Asymptotic properties of a Nadaraya–Watson type estimator for regression functions of infinite order”, SSRN Electronic Journal, 2016

[36] G. G. Roussas, “Nonparametric regression estimation under mixing conditions”, Stochastic Process. Appl, 36:1 (1990), 107–116 | DOI | MR

[37] E. Masry, “Nonparametric regression estimation for dependent functional data: asymptotic normality”, Stochastic Process. Appl., 115:1 (2005), 155–177 | DOI | MR

[38] J. Jiang, Y. P. Mack, “Robust local polynomial regression for dependent data”, Statist. Sinica, 11:3 (2001), 705–722 | MR

[39] E. Masry, “Local linear regression estimation under long-range dependence: strong consistency and rates”, IEEE Trans. Inform. Theory, 47:7 (2001), 2863–2875 | DOI | MR

[40] N. V. Millionschikov, “Asimptoticheskaya normalnost otsenok regressii dlya slabozavisimykh sluchainykh polei”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 2, 3–8 | MR | Zbl

[41] B. E. Hansen, “Uniform convergence rates for kernel estimation with dependent data”, Econometric Theory, 24:3 (2008), 726–748 | DOI | MR

[42] J. Gao, S. Kanaya, D. Li, D. Tjostheim, “Uniform consistency for nonparametric estimators in null recurrent time series”, Econometric Theory, 31:5 (2015), 911–952 | DOI | MR

[43] Q. Wang, N. Chan, “Uniform convergence rates for a class of martingales with application in non-linear cointegrating regression cointegrating regression”, Bernoulli, 20:1 (2014), 207–230 | DOI | MR

[44] N. Chan N, Q. Wang, “Uniform convergence for nonparametric estimators with nonstationary data”, Econometric Theory, 30:5 (2014), 1110–1133 | DOI | MR

[45] O. Linton, Q. Wang, “Nonparametric transformation regression with nonstationary data”, Econometric Theory, 32:1 (2016), 1–29 | DOI | MR

[46] Q. Wang, P. C. B. Phillips, “Structural nonparametric cointegrating regression”, Econometrica, 77:6 (2009), 1901–1948 | DOI | MR

[47] H. A. Karlsen, T. Myklebust, D. Tjostheim, “Nonparametric estimation in a nonlinear cointegration type model”, Ann. Statist., 35:1 (2007), 252–299 | DOI | MR

[48] J. Chen, J. Gao, D. Li, “Estimation in semi-parametric regression with non-stationary regressors”, Bernoulli, 18:2 (2012), 678–702 | DOI | MR

[49] N. N. Chentsov, “Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the heuristic approach to the Kolmogorov–Smirnov tests”, Theory Probab. Appl., 1 (1956), 140–144 | DOI

[50] Yu. Yu. Linke, “Asymptotic properties of one-step $M$-estimators”, Comm. Statist. Theory Methods, 48:16 (2019), 4096–4118 | DOI | MR

[51] Yu. Yu. Linke, I. S. Borisov, “O postroenii yavnykh otsenok v zadachakh nelineinoi regressii”, Teoriya veroyatn. i ee primen., 63:1 (2018), 29–56 | DOI

[52] Yu. Yu. Linke, I. S. Borisov, “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120 (2017), 87–94 | DOI | MR

[53] F. Yao, “Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data”, J. Multivariate Anal., 98:1 (2007), 40–56 | DOI | MR

[54] L. R. Cheruiyot, “Local linear regression estimator on the boundary correction in nonparametric regression estimation”, J. Stat. Theory Appl., 19:3 (2020), 460–471 | DOI

[55] Yu. Yu. Linke, I. S. Borisov, “Universalnye neparametricheskie yadernye otsenki dlya funktsii srednego i kovariatsii sluchainogo protsessa”, Teoriya veroyatn. i ee primen., 29–56 (to appear)

[56] P. Qiu, Image Processing and Jump Regression Analysis, Wiley Ser. Probab. and Stat., Wiley, Hoboken, NJ, 2005 | MR

[57] E. Rio, “Moment inequalities for sums of dependent random variables under projective conditions”, J. Theoret. Probab., 22:1 (2009), 146–163 | DOI | MR