Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_3_a3, author = {Yu. Yu. Linke}, title = {On {Sufficient} {Conditions} for the {Consistency} of {Local} {Linear} {Kernel} {Estimators}}, journal = {Matemati\v{c}eskie zametki}, pages = {353--369}, publisher = {mathdoc}, volume = {114}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a3/} }
Yu. Yu. Linke. On Sufficient Conditions for the Consistency of Local Linear Kernel Estimators. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 353-369. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a3/
[1] J. Fan, I. Gijbels, Local Polynomial Modelling and Its Applications, Monographs on Stat. Appl. Prob., 66, Chapman Hall, London, 1996 | MR
[2] W. Hardle, M. Muller, S. Sperlich, A. Werwatz, Nonparametric and Semiparametric Models, Springer Ser. in Statistics, Springer-Verlag, Berlin, 2004 | MR
[3] J. Fan, Q. Yao, Nonlinear Time Series. Nonparametric and Parametric Methods, Springer Ser. in Statistics, Springer-Verlag, New York, 2003 | MR
[4] L. Györfi, M. Kohler, A. Krzyzak, H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer Ser. in Statistics, Springer-Verlag, New York, 2002 | MR
[5] W. Härdle, Applied Nonparametric Regression, Econometric Soc. Monog., 19, Cambridge Univ. Press, Cambridge, 1990 | MR
[6] C. Loader, Local Regression and Likelihood, Statistics and Computing, Springer-Verlag, New York, 1999 | MR
[7] H.-G. Müller, Nonparametric Regression Analysis of Longitudinal Data, Lecture Notes in Stat., 46, Springer-Verlag, New York, 1988 | MR
[8] I. S. Borisov, Yu. Yu. Linke, P. S. Ruzankin, “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 84:2 (2021), 141–166 | DOI | MR
[9] Y. Linke, I. Borisov, P. Ruzankin, V. Kutsenko, E. Yarovaya, S. Shalnova, “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10:15 (2022), 2693 | DOI
[10] Yu. Yu. Linke, I. S. Borisov, “Insensitivity of Nadaraya–Watson estimators to design correlation”, Comm. Statist. Theory Methods, 51:19 (2022), 6909–6918 | DOI | MR
[11] Yu. Yu. Linke, “K voprosu o nechuvstvitelnosti otsenok Nadaraya–Vatsona otnositelno korrelyatsii elementov dizaina”, Teoriya veroyatn. i ee primen., 68:2 (2023), 236–252 | DOI
[12] J. Beran, Y. Feng, “Local polynomial estimation with a FARIMA-GARCH error process”, Bernoulli, 7:5 (2001), 733–550 | DOI | MR
[13] D. Benelmadani, K. Benhenni, S. Louhichi, “Trapezoidal rule and sampling designs for the nonparametric estimation of the regression function in models with correlated errors”, Statistics, 54:1 (2020), 59–96 | DOI | MR
[14] X. Tang, M. Xi, Y. Wu, X. Wang, “Asymptotic normality of a wavelet estimator for asymptotically negatively associated errors”, Statist. Probab. Lett., 140 (2018), 191–201 | DOI | MR
[15] W. Gu, G. G. Roussas, L. T. Tran, “On the convergence rate of fixed design regression estimators for negatively associated random variables”, Statist. Probab. Lett., 77:12 (2007), 1214–1224 | DOI | MR
[16] J. S. Wu, C. K. Chu, “Nonparametric estimation of a regression function with dependent observations”, Stochastic Process. Appl., 50:1 (1994), 149–160 | DOI | MR
[17] K. Benhenni, S. Hedli-Griche, M. Rachdi, “Estimation of the regression operator from functional fixed-design with correlated errors”, J. Multivariate Anal., 101:2 (2010), 476–490 | DOI | MR
[18] D. A. Ioannides, “Consistent nonparametric regression: some generalizations in the fixed design case”, J. Nonparametr. Statist., 2:3 (1993), 203–213 | DOI | MR
[19] A. A. Georgiev, “Asymptotic properties of the multivariate Nadaraya–Watson regression function estimate: the fixed design case”, Statist. Probab. Lett., 7:1 (1989), 35–40 | DOI | MR
[20] W. Hardle, S. Luckhaus, “Uniform consistency of a class of regression function estimators”, Ann. Statist., 12:2 (2012), 612–623 | MR
[21] L. P. Devroye, “The uniform convergence of the Nadaraya–Watson regression function estimate”, Canad. J. Statist., 6:2 (1979), 179–191 | DOI | MR
[22] E. A. Nadaraya, “Zamechaniya o neparametricheskikh otsenkakh plotnosti veroyatnosti i krivoi regressii”, Teoriya veroyatn. i ee primen., 15:1 (1970), 139–142 | MR | Zbl
[23] H. Liero, “Strong uniform consistency of nonparametric regression function estimates”, Probab. Theory Related Fields, 82:4 (1989), 587–614 | DOI | MR
[24] Y. P. Mack, B. W. Silvermann, “Weak and strong uniform consistency of kernel regressionestimates”, Z. Wahrsch. Verw. Gebiete, 61:3 (1982), 405–415 | DOI | MR
[25] U. Einmahl, D. M. Mason, “Uniform in bandwidth consistency of kernel-type function estimators”, Ann. Statist., 33:3 (2005), 1380–1403 | MR
[26] T. Gasser, J. Engel, “The choice of weights in kernel regression estimation”, Biometrica, 77:2 (1990), 377–381 | DOI | MR
[27] C. K. Chu, W.-S. Deng, “An interpolation method for adapting to sparse design in multivariate nonparametric regression”, J. Statist. Plann. Inference, 116:1 (2003), 91–111 | DOI | MR
[28] Q. Li, X. Lu, A. Ullah, “Multivariate local polynomial regression for estimating average derivatives”, J. Nonparametr. Stat., 15:4–5 (2003), 607–624 | DOI | MR
[29] J. Gu, Q. Li, J.-C. Yang, “Multivariate local polynomial kernel estimators: leading bias and asymptotic distribution”, Econometric Rev., 34:6–10 (2015), 978–1009 | MR
[30] O. B. Linton, D. T. Jacho-Chavez, “On internally corrected and symmetrized kernel estimators for nonparametric regression”, TEST, 19:1 (2010), 166–186 | DOI | MR
[31] R. Kulik, P. Lorek, “Some results on random design regression with long memory errors and predictors”, J. Statist. Plann. Inference, 141:1 (2011), 508–523 | DOI | MR
[32] J. Shen, Y. Xie, “Strong consistency of the internal estimator of nonparametric regression with dependent data”, Statist. Probab. Lett., 83:8 (2013), 1915–1925 | MR
[33] E. Masry, “Multivariate local polynomial regression for time series: uniform strong consistency and rates”, J. Time Ser. Anal., 17:6 (1996), 571–599 | DOI | MR
[34] X. Li, W. Yang, S. Hu, “Uniform convergence of estimator for nonparametric regression with dependent data”, J. Inequal. Appl., 2016, 142 | MR
[35] S. J. Hong, O. B. Linton, “Asymptotic properties of a Nadaraya–Watson type estimator for regression functions of infinite order”, SSRN Electronic Journal, 2016
[36] G. G. Roussas, “Nonparametric regression estimation under mixing conditions”, Stochastic Process. Appl, 36:1 (1990), 107–116 | DOI | MR
[37] E. Masry, “Nonparametric regression estimation for dependent functional data: asymptotic normality”, Stochastic Process. Appl., 115:1 (2005), 155–177 | DOI | MR
[38] J. Jiang, Y. P. Mack, “Robust local polynomial regression for dependent data”, Statist. Sinica, 11:3 (2001), 705–722 | MR
[39] E. Masry, “Local linear regression estimation under long-range dependence: strong consistency and rates”, IEEE Trans. Inform. Theory, 47:7 (2001), 2863–2875 | DOI | MR
[40] N. V. Millionschikov, “Asimptoticheskaya normalnost otsenok regressii dlya slabozavisimykh sluchainykh polei”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 2, 3–8 | MR | Zbl
[41] B. E. Hansen, “Uniform convergence rates for kernel estimation with dependent data”, Econometric Theory, 24:3 (2008), 726–748 | DOI | MR
[42] J. Gao, S. Kanaya, D. Li, D. Tjostheim, “Uniform consistency for nonparametric estimators in null recurrent time series”, Econometric Theory, 31:5 (2015), 911–952 | DOI | MR
[43] Q. Wang, N. Chan, “Uniform convergence rates for a class of martingales with application in non-linear cointegrating regression cointegrating regression”, Bernoulli, 20:1 (2014), 207–230 | DOI | MR
[44] N. Chan N, Q. Wang, “Uniform convergence for nonparametric estimators with nonstationary data”, Econometric Theory, 30:5 (2014), 1110–1133 | DOI | MR
[45] O. Linton, Q. Wang, “Nonparametric transformation regression with nonstationary data”, Econometric Theory, 32:1 (2016), 1–29 | DOI | MR
[46] Q. Wang, P. C. B. Phillips, “Structural nonparametric cointegrating regression”, Econometrica, 77:6 (2009), 1901–1948 | DOI | MR
[47] H. A. Karlsen, T. Myklebust, D. Tjostheim, “Nonparametric estimation in a nonlinear cointegration type model”, Ann. Statist., 35:1 (2007), 252–299 | DOI | MR
[48] J. Chen, J. Gao, D. Li, “Estimation in semi-parametric regression with non-stationary regressors”, Bernoulli, 18:2 (2012), 678–702 | DOI | MR
[49] N. N. Chentsov, “Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the heuristic approach to the Kolmogorov–Smirnov tests”, Theory Probab. Appl., 1 (1956), 140–144 | DOI
[50] Yu. Yu. Linke, “Asymptotic properties of one-step $M$-estimators”, Comm. Statist. Theory Methods, 48:16 (2019), 4096–4118 | DOI | MR
[51] Yu. Yu. Linke, I. S. Borisov, “O postroenii yavnykh otsenok v zadachakh nelineinoi regressii”, Teoriya veroyatn. i ee primen., 63:1 (2018), 29–56 | DOI
[52] Yu. Yu. Linke, I. S. Borisov, “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120 (2017), 87–94 | DOI | MR
[53] F. Yao, “Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data”, J. Multivariate Anal., 98:1 (2007), 40–56 | DOI | MR
[54] L. R. Cheruiyot, “Local linear regression estimator on the boundary correction in nonparametric regression estimation”, J. Stat. Theory Appl., 19:3 (2020), 460–471 | DOI
[55] Yu. Yu. Linke, I. S. Borisov, “Universalnye neparametricheskie yadernye otsenki dlya funktsii srednego i kovariatsii sluchainogo protsessa”, Teoriya veroyatn. i ee primen., 29–56 (to appear)
[56] P. Qiu, Image Processing and Jump Regression Analysis, Wiley Ser. Probab. and Stat., Wiley, Hoboken, NJ, 2005 | MR
[57] E. Rio, “Moment inequalities for sums of dependent random variables under projective conditions”, J. Theoret. Probab., 22:1 (2009), 146–163 | DOI | MR