Approximation of Mathieu Functions by Parabolic
Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 347-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Mathieu equation with complex coefficients of a special form is considered. Simple nonuniform asymptotics of its solutions in terms of parabolic cylinder functions are constructed.
Mots-clés : Mathieu equation
Keywords: asymptotics, parabolic cylinder function.
@article{MZM_2023_114_3_a2,
     author = {E. A. Zlobina},
     title = {Approximation of {Mathieu} {Functions} by {Parabolic}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {347--352},
     publisher = {mathdoc},
     volume = {114},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a2/}
}
TY  - JOUR
AU  - E. A. Zlobina
TI  - Approximation of Mathieu Functions by Parabolic
JO  - Matematičeskie zametki
PY  - 2023
SP  - 347
EP  - 352
VL  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a2/
LA  - ru
ID  - MZM_2023_114_3_a2
ER  - 
%0 Journal Article
%A E. A. Zlobina
%T Approximation of Mathieu Functions by Parabolic
%J Matematičeskie zametki
%D 2023
%P 347-352
%V 114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a2/
%G ru
%F MZM_2023_114_3_a2
E. A. Zlobina. Approximation of Mathieu Functions by Parabolic. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a2/

[1] R. E. Langer, “The solutions of the Mathieu equation with a complex variable and at least one parameter large”, Trans. Amer. Math. Soc., 36:3 (1934), 637–710 | DOI | MR

[2] R. W. McKelvey, “The solutions of second order linear ordinary differential equations about a turning point of order two”, Trans. Amer. Math. Soc., 79 (1955), 103–123 | DOI | MR

[3] A. Sharples, “Uniform asymptotic forms of modified Mathieu functions”, Quart. J. Mech. Appl. Math., 20:3 (1967), 365–380 | DOI | MR

[4] A. Sharples, “Uniform asymptotic expansions of modified Mathieu functions”, J. Reine Angew. Math., 247 (1971), 1–17 | DOI | MR

[5] W. Barret, “Mathieu functions of general order: connection formulae, base functions and asymptotic formulae. I–V”, Philos. Trans. Roy. Soc. London Ser. A, 301 (1981), 75–162 | DOI | MR

[6] D. T. Mark, “Uniform asymptotic approximation of Mathieu functions”, Methods Appl. Anal., 1:2 (1994), 143–168 | DOI | MR

[7] NIST Handbook of Mathematical Functions, eds. F. W. G. Olver, D. W. Lozier, R. F. Boisvert, C. B. Clark, Cambridge Univ. Press, Cambridge, 2010 | MR

[8] E. A. Zlobina, A. P. Kiselev, “Frenelevskie perekhodnye zony”, Radiotekhnika i Elektronika, 68:6 (2023), 542–552

[9] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1973 | MR

[10] S. Yu. Dobrokhotov, A. V. Tsvetkova, “Global asymptotics for functions of parabolic cylinder and solutions of the Schrödinger equation with a potential in the form of a nonsmooth double well”, Russ. J. Math. Phys., 30:1 (2023), 46–61 | DOI | MR

[11] F. Olver, Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978 | MR