Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected
Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 323-338
Voir la notice de l'article provenant de la source Math-Net.Ru
In a three-dimensional normed space $X$, any bounded Chebyshev set is monotone path connected if and only if one of the following two conditions holds: (1) the set of extreme points of the sphere in the dual space is dense in this sphere; (2) $X=Y\oplus_\infty \mathbb R$ (i.e., the unit sphere of $X$ is a cylinder).
Keywords:
Chebyshev set, monotone path connected set, bounded Chebyshev set.
@article{MZM_2023_114_3_a0,
author = {B. B. Bednov},
title = {Three-Dimensional {Spaces} {Where} {All} {Bounded} {Chebyshev} {Sets} {Are} {Monotone} {Path} {Connected}},
journal = {Matemati\v{c}eskie zametki},
pages = {323--338},
publisher = {mathdoc},
volume = {114},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a0/}
}
B. B. Bednov. Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 323-338. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a0/