Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected
Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 323-338

Voir la notice de l'article provenant de la source Math-Net.Ru

In a three-dimensional normed space $X$, any bounded Chebyshev set is monotone path connected if and only if one of the following two conditions holds: (1) the set of extreme points of the sphere in the dual space is dense in this sphere; (2) $X=Y\oplus_\infty \mathbb R$ (i.e., the unit sphere of $X$ is a cylinder).
Keywords: Chebyshev set, monotone path connected set, bounded Chebyshev set.
@article{MZM_2023_114_3_a0,
     author = {B. B. Bednov},
     title = {Three-Dimensional {Spaces} {Where} {All} {Bounded} {Chebyshev} {Sets} {Are} {Monotone} {Path} {Connected}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--338},
     publisher = {mathdoc},
     volume = {114},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a0/}
}
TY  - JOUR
AU  - B. B. Bednov
TI  - Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected
JO  - Matematičeskie zametki
PY  - 2023
SP  - 323
EP  - 338
VL  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a0/
LA  - ru
ID  - MZM_2023_114_3_a0
ER  - 
%0 Journal Article
%A B. B. Bednov
%T Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected
%J Matematičeskie zametki
%D 2023
%P 323-338
%V 114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a0/
%G ru
%F MZM_2023_114_3_a0
B. B. Bednov. Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 323-338. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a0/