On Some Properties of the Permanent of Matrices of Small Orders
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 274-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

The permanent is a multilinear function that is a “symmetric” analog of the determinant. In the present paper, we consider several properties of the permanent of matrices of small orders.
Mots-clés : permanent
Keywords: multilinear function.
@article{MZM_2023_114_2_a8,
     author = {D. B. Efimov},
     title = {On {Some} {Properties} of the {Permanent} of {Matrices} of {Small} {Orders}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {274--281},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a8/}
}
TY  - JOUR
AU  - D. B. Efimov
TI  - On Some Properties of the Permanent of Matrices of Small Orders
JO  - Matematičeskie zametki
PY  - 2023
SP  - 274
EP  - 281
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a8/
LA  - ru
ID  - MZM_2023_114_2_a8
ER  - 
%0 Journal Article
%A D. B. Efimov
%T On Some Properties of the Permanent of Matrices of Small Orders
%J Matematičeskie zametki
%D 2023
%P 274-281
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a8/
%G ru
%F MZM_2023_114_2_a8
D. B. Efimov. On Some Properties of the Permanent of Matrices of Small Orders. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 274-281. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a8/

[1] Kh. Mink, Permanenty, Mir, M., 1982 | MR

[2] M. Marcus, F. C. May, “The permanent function”, Canadian J. Math., 14 (1962), 177–189 | DOI | MR

[3] P. Botta, “Linear transformations that preserve the permanent”, Proc. Amer. Math. Soc., 18 (1967), 566–569 | DOI | MR

[4] M. V. Budrevich, A. E. Guterman, M. A. Daffner, “Lineinye otobrazheniya kososimmetricheskikh matrits, sokhranyayuschie permanent”, Chislennye metody i voprosy organizatsii vychislenii. XXXI, Zap. nauchn. sem. POMI, 472, POMI, SPb., 2018, 31–43

[5] R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Math. Appl., 39, Cambridge Univ. Press, Cambridge, 1991 | MR

[6] V. S. Shevelev, “Nekotorye voprosy teorii perechisleniya perestanovok s ogranichennymi pozitsiyami”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Mat. stat. Teor. kibernet., 30, VINITI, M., 1992, 113–177 | MR | Zbl

[7] V. N. Sachkov, V. E. Tarakanov, Kombinatorika neotritsatelnykh matrits, TVP, M., 2000 | MR