Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_2_a6, author = {D. K. Durdiev and J. Sh. Safarov and J. Sh. Safarov}, title = {Inverse {Problem} for an {Integrodifferential} {Equation} of the {Hyperbolic} {Type} protect in a {Rectangular} {Domain}}, journal = {Matemati\v{c}eskie zametki}, pages = {244--259}, publisher = {mathdoc}, volume = {114}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a6/} }
TY - JOUR AU - D. K. Durdiev AU - J. Sh. Safarov AU - J. Sh. Safarov TI - Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type protect in a Rectangular Domain JO - Matematičeskie zametki PY - 2023 SP - 244 EP - 259 VL - 114 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a6/ LA - ru ID - MZM_2023_114_2_a6 ER -
%0 Journal Article %A D. K. Durdiev %A J. Sh. Safarov %A J. Sh. Safarov %T Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type protect in a Rectangular Domain %J Matematičeskie zametki %D 2023 %P 244-259 %V 114 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a6/ %G ru %F MZM_2023_114_2_a6
D. K. Durdiev; J. Sh. Safarov; J. Sh. Safarov. Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type protect in a Rectangular Domain. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 244-259. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a6/
[1] A. H. Hasanov, V. G. Romanov, Introduction to Inverse Problems for Differential Equations, Springer, Cham, 2017 | MR
[2] V. Isakov, Inverse Problems for Partial Differential Equations, Appl. Math. Sci., 127, Springer, New York, 2006 | MR
[3] A. A. Samarskii, P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, Inverse and Ill-posed Probl. Ser., 52, de Gruyter, Berlin, 2007 | MR
[4] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Appl. Math. Sci., 120, Springer, Cham, 2021 | MR
[5] D. Lesnic, Inverse Problems with Aaplications in Science and Engineering, CRC Press, Boca Raton, FL, 2022 | MR
[6] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009 | MR
[7] A. Lorenzi, E. Sinestrari, “Stability results for a partial integrodifferential inverse problem”, Volterra Integrodifferential Equations in Banach Spaces and Applications (Trento, 1987), Pitman Res. Notes Math. Ser., 190, Longman, Harlow, 1989, 271–294 | MR
[8] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Sem. Mat. Univ. Padova, 87 (1992), 105–138 | MR
[9] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal., 22:1 (1994), 21–44 | DOI | MR
[10] Z. Sh. Safarov, D. K. Durdiev, “Inverse problem for an integro-differential equation of acoustics”, Differ. Equ., 54:1 (2018), 134–142 | DOI | MR
[11] J. Sh. Safarov, “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, J. Sib. Fed. Univ. Math. Phys., 11:6 (2018), 753–763 | DOI | MR
[12] V. G. Romanov, “Ob opredelenii koeffitsientov v uravneniyakh vyazkouprugosti”, Sib. matem. zhurn., 55:3 (2014), 617–626 | MR
[13] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki, 97:6 (2015), 855–867 | DOI | MR
[14] Zh. D. Totieva, D. K. Durdiev, “Zadacha ob opredelenii odnomernogo yadra uravneniya termovyazkouprugosti”, Matem. zametki, 103:1 (2018), 129–146 | DOI | MR
[15] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Math. Methods Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR
[16] D. Guidetti, “Reconstruction of a convolution kernel in a parabolic problem with a memory term in the boundary conditions”, Bruno Pini Mathematical Analysis Seminar, Bruno Pini Math. Anal. Semin., 4, Univ. Bologna, Bologna, 2013, 47–55 | MR
[17] C. Cavaterra, D. Guidetti, “Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term”, Ann. Mat. Pura Appl. (4), 193:3 (2014), 779–816 | DOI | MR
[18] J. Janno, L. von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | MR
[19] D. K. Durdiev, A. A. Rakhmonov, “Zadacha ob opredelenii dvumernogo yadra v sisteme integrodifferentsialnykh uravnenii vyazkouprugoi poristoi sredy”, Sib. zhurn. industr. matem., 23:2 (2020), 63–80 | DOI
[20] D. K. Durdiev, Zh. Sh. Safarov, “Zadacha ob opredelenii dvumernogo yadra uravneniya vyazkouprugosti so slabo gorizontalnoi neodnorodnostyu”, Sib. zhurn. industr. matem., 25:1 (2022), 14–38 | DOI
[21] D. K. Durdiev, A. A. Rakhmonov, “Zadacha ob opredelenii dvumernogo yadra v sisteme integrodifferentsialnykh uravnenii vyazkouprugoi poristoi sredy”, Sib. zhurn. industr. matem., 23:2 (2020), 63–80 | DOI
[22] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matem., 4:3 (2001), 259–268 | Zbl
[23] U. D. Durdiev, “Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty”, Sib. elektron. matem. izv., 17 (2020), 179–189 | DOI
[24] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Eurasian J. Math. Comp. Appl., 8:2 (2020), 4–16 | DOI
[25] K. B. Sabitov, A. R. Zainullov, “Obratnye zadachi dlya dvumernogo uravneniya teploprovodnosti po otyskaniyu pravoi chasti”, Izv. vuzov. Matem., 2021, no. 3, 83–97 | DOI
[26] A. R. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR